Complex terrains and wind power : enhancing forecasting accuracy through CNNs and DeepSHAP analysis

annif.suggestionswind energy|forecasts|wind|renewable energy sources|weather forecasting|machine learning|wind power stations|energy production (process industry)|wind farms|wind power areas|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p7125|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p11580|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p6952|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p24284|http://www.yso.fi/onto/yso/p27905en
dc.contributor.authorKonstantinou, Theodoros
dc.contributor.authorHatziargyriou, Nikos
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-09-20T04:42:14Z
dc.date.accessioned2025-06-25T13:34:11Z
dc.date.available2024-09-20T04:42:14Z
dc.date.issued2024-01-05
dc.description.abstractAccurate prediction of wind power generation in regions characterised by complex terrain is a critical gap in renewable energy research. To address this challenge, the present study articulates a novel methodological framework using Convolutional Neural Networks (CNNs) to improve wind power forecasting in such geographically diverse areas. The core research question is to investigate the extent to which terrain complexity affects forecast accuracy. To this end, DeepSHAP—an advanced interpretability technique—is used to dissect the CNN model and identify the most significant features of the weather forecast grid that have the greatest impact on forecast accuracy. Our results show a clear correlation between certain topographical features and forecast accuracy, demonstrating that complex terrain features are an important part of the forecasting process. The study’s findings support the hypothesis that a detailed understanding of terrain features, facilitated by model interpretability, is essential for improving wind energy forecasts. Consequently, this research addresses an important gap by clarifying the influence of complex terrain on wind energy forecasting and provides a strategic pathway for more efficient use of wind resources, thereby supporting the wider adoption of wind energy as a sustainable energy source, even in regions with complex terrain.-
dc.description.notification© 2024 Konstantinou and Hatziargyriou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent12-
dc.identifier.olddbid21513
dc.identifier.oldhandle10024/18091
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2334
dc.identifier.urnURN:NBN:fi-fe2024092074049-
dc.language.isoeng-
dc.publisherFrontiers Media-
dc.relation.doi10.3389/fenrg.2023.1328899-
dc.relation.ispartofjournalFrontiers in Energy Research-
dc.relation.issn2296-598X-
dc.relation.urlhttps://doi.org/10.3389/fenrg.2023.1328899-
dc.relation.volume11-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001144321000001-
dc.source.identifierScopus:85182602636-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18091
dc.subjectconvolutional neural networks-
dc.subjectDeepSHAP-
dc.subjectfeature importance-
dc.subjectterrain complexit-
dc.subjectwind power forecasting-
dc.subjectFrontiers-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleComplex terrains and wind power : enhancing forecasting accuracy through CNNs and DeepSHAP analysis-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Konstantinou_Hatziargyriou_2024.pdf
Size:
13.54 MB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat