Driven by Brownian motion Cox–Ingersoll–Ross and squared Bessel processes : Interaction and phase transition

annif.suggestionsstochastic processes|probability calculation|physics|mathematics|mathematical models|Markov chains|modelling (representation)|chaos theory|copyright|differential equations|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p11400|http://www.yso.fi/onto/yso/p4746|http://www.yso.fi/onto/yso/p900|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p11401|http://www.yso.fi/onto/yso/p13075|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p6339|http://www.yso.fi/onto/yso/p2346|http://www.yso.fi/onto/yso/p3552en
dc.contributor.authorMishura, Yuliya
dc.contributor.authorRalchenko, Kostiantyn
dc.contributor.authorKushnirenko, Svitlana
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-7208-3130-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-05-27T11:22:04Z
dc.date.accessioned2025-06-25T14:04:13Z
dc.date.available2025-05-27T11:22:04Z
dc.date.issued2025-01-07
dc.description.abstractThis paper studies two related stochastic processes driven by Brownian motion: the Cox–Ingersoll–Ross (CIR) process and the Bessel process. We investigate their shared and distinct properties, focusing on time-asymptotic growth rates, distance between the processes in integral norms, and parameter estimation. The squared Bessel process is shown to be a phase transition of the CIR process and can be approximated by a sequence of CIR processes. Differences in stochastic stability are also highlighted, with the Bessel process displaying instability while the CIR process remains ergodic and stable.-
dc.description.notification©2025 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Mishura, Y., Ralchenko, K., & Kushnirenko, S. (2025). Driven by Brownian motion Cox–Ingersoll–Ross and squared Bessel processes: Interaction and phase transition. Physics of Fluids 37(1), 017115 and may be found at https://doi.org/10.1063/5.0244168.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid23869
dc.identifier.oldhandle10024/19371
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3271
dc.identifier.urnURN:NBN:fi-fe2025052755218-
dc.language.isoeng-
dc.publisherAmerican institute of physics-
dc.relation.doi10.1063/5.0244168-
dc.relation.funderThe Swedish Foundation for Strategic Research-
dc.relation.funderJapan Science and Technology Agency CREST-
dc.relation.funderResearch Council of Norway-
dc.relation.funderResearch Council of Finland-
dc.relation.grantnumberUKR24-0004-
dc.relation.grantnumber811JPMJCR2115-
dc.relation.grantnumber274410-
dc.relation.grantnumber359815-
dc.relation.ispartofjournalPhysics of Fluids-
dc.relation.issn1527-2435-
dc.relation.issn1070-6631-
dc.relation.issue1-
dc.relation.urlhttps://doi.org/10.1063/5.0244168-
dc.relation.volume37-
dc.source.identifier2-s2.0-85214585595-
dc.source.identifierWOS:001391795800002-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19371
dc.subjectPhase transitions-
dc.subjectProbability theory-
dc.subjectStatistical analysis-
dc.subjectBrownian motion-
dc.subjectStochastic calculus-
dc.subject.disciplinefi=Matematiikka|en=Mathematics|-
dc.subject.ysostochastic processes-
dc.titleDriven by Brownian motion Cox–Ingersoll–Ross and squared Bessel processes : Interaction and phase transition-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Mishura_Ralchenko_Kushnirenko_2025.pdf
Size:
433.07 KB
Format:
Adobe Portable Document Format

Kokoelmat