A Stochastic Planning Model for Improving Resilience of Distribution System Considering Master-Slave Distributed Generators and Network Reconfiguration

annif.suggestionselectrical power networks|distribution of electricity|warehousing|electric power|optimisation|microgrids|energy|natural disasters|Iran|energy control|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p6576|http://www.yso.fi/onto/yso/p1213|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p39009|http://www.yso.fi/onto/yso/p1310|http://www.yso.fi/onto/yso/p1177|http://www.yso.fi/onto/yso/p105280|http://www.yso.fi/onto/yso/p2388en
dc.contributor.authorGhasemi, Mostafa
dc.contributor.authorKazemi, Ahad
dc.contributor.authorGilani, Mohammad Amin
dc.contributor.authorShafie-Khah, Miadreza
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-03-15T09:13:09Z
dc.date.accessioned2025-06-25T13:23:37Z
dc.date.available2022-03-15T09:13:09Z
dc.date.issued2021-05-25
dc.description.abstractThe recent experiences of extreme weather events highlight the significance of boosting the resilience of distribution systems. In this situation, the resilience of distribution systems planning leads to an efficient solution for protecting the system from these events via line hardening and the installation of distributed generators (DGs). For this aim, this study presents a new two-stage stochastic mixed-integer linear programming model (SMILP) to hedge against natural disaster uncertainty. The first stage involves making investment decisions about line hardening and DG installation. Then, in the second stage, the dynamic microgrids are created according to a master-slave concept with the ability of integrating distributed generators to minimize the cost of loss of load in each uncertain outage scenario. In particular, this paper presents an approach to select the line damage scenarios for the SMILP. In addition, the operational strategies such as load control capability, microgrid formation and network reconfiguration are integrated into the distribution system plans for resilience improvement in both planning and emergency response steps. The simulation results for an IEEE 33-bus test system demonstrate the effectiveness of the proposed model in improving disaster-induced the resilience of distribution systems.-
dc.description.notification© 2021 IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent14-
dc.format.pagerange78859-78872-
dc.identifier.olddbid15591
dc.identifier.oldhandle10024/13649
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2032
dc.identifier.urnURN:NBN:fi-fe2022031523507-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2021.3083698-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2021.3083698-
dc.relation.volume9-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:000673766000001-
dc.source.identifierScopus:85113217638-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13649
dc.subjectdistribution system-
dc.subjectmaster-slave concept-
dc.subjectmicrogrid formation-
dc.subjectresilience improvement planning-
dc.subjecttwo-stage stochastic programming-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleA Stochastic Planning Model for Improving Resilience of Distribution System Considering Master-Slave Distributed Generators and Network Reconfiguration-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ghasemi_Kazemi_Gilani_Shafie-Khah_2021.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat