Stochastic Optimal Operation Framework of an Integrated Methane-Based Zero-CO2 Energy Hub in Energy Markets

annif.suggestionselectricity market|optimisation|wind energy|energy production (process industry)|production of electricity|emissions|modelling (creation related to information)|renewable energy sources|smart grids|natural gas|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p16837|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p5561|http://www.yso.fi/onto/yso/p437|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p7053en
dc.contributor.authorTavakoli, Alireza
dc.contributor.authorKarimi, Ali
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-11-24T10:25:10Z
dc.date.accessioned2025-06-25T13:36:58Z
dc.date.available2023-04-22T22:00:28Z
dc.date.issued2022-04-22
dc.description.abstractEnergy hubs (EHs) are couplers between different energy carriers in smart grids. The optimal participation of these actors in energy markets (EMs) as active and helpful actors is essential. This paper presents a new structure of methane-based EH considering biomass fuel to participate in the EMs of electricity, heat, and natural gas (NG). For this purpose, we propose an optimal bidding framework for the EH as a MILP stochastic optimization problem. The EH does not inject any CO2 pollution into the air (zero-CO2) and converts it into valuable methane (CH4) fuel using the CH4 production unit. To model uncertain parameters, electricity market price, wind speed, and solar radiation, an LSTM-based model of deep learning is proposed for scenario generation. Moreover, the Kantorovich distance matrix method reduces the generated scenarios. Since the proposed EH structure is compatible with Finland's infrastructure, simulation studies using actual data of this country are performed on selected days. The results show that in addition to profitable operation, high flexibility, environmental friendliness, and high accuracy of uncertainty modeling, the EH has no dependence on the purchase of energy carriers.-
dc.description.notification©2022 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-04-22
dc.embargo.terms2023-04-22
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid17166
dc.identifier.oldhandle10024/14761
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2412
dc.identifier.urnURN:NBN:fi-fe2022112466785-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.epsr.2022.108005-
dc.relation.ispartofjournalElectric Power Systems Research-
dc.relation.issn1873-2046-
dc.relation.issn0378-7796-
dc.relation.urlhttps://doi.org/10.1016/j.epsr.2022.108005-
dc.relation.volume209-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:000795495400006-
dc.source.identifierScopus:85129475131-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/14761
dc.subjectBiomass-
dc.subjectDeep learning-
dc.subjectEnergy hub-
dc.subjectMethane-
dc.subjectUncertainty modeling-
dc.subjectZero-CO2-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleStochastic Optimal Operation Framework of an Integrated Methane-Based Zero-CO2 Energy Hub in Energy Markets-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Tavakoli_Karimi_Shafie-khah_2022.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat