Batch Normalization Free Rigorous Feature Flow Neural Network for Grocery Product Recognition

annif.suggestionsretail trade|machine learning|deep learning|artificial intelligence|recognition|shops|neural networks (information technology)|products|data processing|automated pattern recognition|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p14002|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p8265|http://www.yso.fi/onto/yso/p1132|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p2862|http://www.yso.fi/onto/yso/p2407|http://www.yso.fi/onto/yso/p8266en
dc.contributor.authorSelvam, Prabu
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorDakshinamurthi, Vidyabharathi
dc.contributor.authorNevgi, Akshaj
dc.contributor.authorBhuvaneswari, R.
dc.contributor.authorDeepak, K.
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-11-13T11:06:17Z
dc.date.accessioned2025-06-25T13:53:57Z
dc.date.available2024-11-13T11:06:17Z
dc.date.issued2024-05-14
dc.description.abstractAutomatic product recognition is crucial in advancing economic and social fronts due to its superior reliability and time-saving nature compared to manual operations. The precise organization of products on store shelves is essential for boosting sales and ensuring customer satisfaction. However, verifying that the physical arrangement aligns with the ideal plan is a costly and time-consuming task for store personnel. In the computer vision domain, detecting products in scene images poses a considerable challenge, particularly when dealing with grocery items displayed on store shelves. The arrangement of products often presents crowded environments with numerous identical objects placed closely together. This study illustrates the ongoing challenge of identifying specific objects in complex situations despite using advanced object detection systems. The proposed framework consists of a three-stage pipeline. The initial stage incorporates a cutting-edge product detection algorithm, YOLOv5, to locate multiple grocery objects. The proposed OD-Refiner layer in the second stage identifies the missed retail object and rectifies overlapping bounding boxes of YOLOv5. The OCR-based object recognizer called Batch Normalization Free Rigorous Feature Flow Neural Network (BNFRNN) is proposed in the final stage of the pipeline. The performance of the proposed framework was evaluated using a benchmark dataset, WebMarket. The proposed framework outperforms current state-of-the-art approaches by achieving a precision score of 92.56%, recall of 85.64%, and F-score of 88.97%.-
dc.description.notification©2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent18-
dc.identifier.olddbid21808
dc.identifier.oldhandle10024/18245
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2953
dc.identifier.urnURN:NBN:fi-fe2024111391437-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2024.3400844-
dc.relation.funderAcademy of Finland-
dc.relation.grantnumber2708102611-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2024.3400844-
dc.relation.volume12-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001227369200001-
dc.source.identifierScopus:85193217633-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18245
dc.subjectConvolutional neural network-
dc.subjectobject detection-
dc.subjectobject recognition-
dc.subjecttext recognition-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysodeep learning-
dc.titleBatch Normalization Free Rigorous Feature Flow Neural Network for Grocery Product Recognition-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Selvam_Faheem_Dakshinamurthi_Nevgi_Bhuvaneswari_ Deepak_2024.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format

Kokoelmat