An advanced short-term wind power forecasting framework based on the optimized deep neural network models

annif.suggestionswind energy|forecasts|time series|wind power stations|wind|energy production (process industry)|neural networks (information technology)|deep learning|machine learning|optimisation|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p12290|http://www.yso.fi/onto/yso/p6952|http://www.yso.fi/onto/yso/p7125|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p13477en
dc.contributor.authorJalali, Seyed Mohammad Jafar
dc.contributor.authorAhmadian, Sajad
dc.contributor.authorKhodayar, Mahdi
dc.contributor.authorKhosravi, Abbas
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorNahavandi, Saeid
dc.contributor.authorCatalão, João P.S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-02-01T10:02:27Z
dc.date.accessioned2025-06-25T12:26:59Z
dc.date.available2023-02-01T10:02:27Z
dc.date.issued2022-10
dc.description.abstractWith the continued growth of wind power penetration into conventional power grid systems, wind power forecasting plays an increasingly competitive role in organizing and deploying electrical and energy systems. The wind power time series, though, often present non-linear and non-stationary characteristics, allowing them quite challenging to estimate precisely. The aim of this paper is in proposing a novel hybrid model named Evol-CNN in order to predict the short-term wind power at 10-min interval up to 3-hr based on deep convolutional neural network (CNN) and evolutionary search optimizer. Specifically, we develop an improved version of Grey Wolf Optimization (GWO) algorithm by incorporating two effective modifications in its original structure. The proposed GWO algorithm is more effective than the original version due to performing in a faster way and the ability to escape from local optima. The proposed GWO algorithm is utilized to find the optimal values of hyperparameters for deep CNN model. Moreover, the optimal CNN model is employed to predict wind power time series. The main advantage of the proposed Evol-CNN model is to enhance the capability of time series forecasting models in obtaining more accurate predictions. Several forecasting benchmarks are compared with the Evol-CNN model to address its effectiveness. The simulation results indicate that the Evol-CNN has a significant advantage over the competitive benchmarks and also, has the minimum error regarding of 10-min, 1-hr and 3-hr ahead forecasting.-
dc.description.notification© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.identifier.olddbid17678
dc.identifier.oldhandle10024/15146
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/250
dc.identifier.urnURN:NBN:fi-fe2023020125421-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.ijepes.2022.108143-
dc.relation.funderFEDER-
dc.relation.funderFCT-
dc.relation.grantnumberPOCI-01-0145-FEDER-029803 (02/SAICT/2017)-
dc.relation.ispartofjournalInternational Journal of Electrical Power & Energy Systems-
dc.relation.issn1879-3517-
dc.relation.issn0142-0615-
dc.relation.urlhttps://doi.org/10.1016/j.ijepes.2022.108143-
dc.relation.volume141-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:000792892200005-
dc.source.identifierScopus:85127516770-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15146
dc.subjectDeep neural networks-
dc.subjectEvolutionary computation-
dc.subjectNeuroevolution-
dc.subjectOptimization-
dc.subjectWind power forecasting-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleAn advanced short-term wind power forecasting framework based on the optimized deep neural network models-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Jalali_Ahmadian_Khodayar_Khosravi_Shafie-khah_Nahavandi_Catalão_2022.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat