A Class of Sectorial Relations and the Associated Closed Forms
dc.contributor.author | Hassi, Seppo | |
dc.contributor.author | de Snoo, H. S. V. | |
dc.contributor.department | fi=Ei tutkimusalustaa|en=No platform| | - |
dc.contributor.editor | Alpay, Daniel | |
dc.contributor.editor | Fritzsche, Bern | |
dc.contributor.editor | Kirstein, Bernd | |
dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
dc.date.accessioned | 2021-01-26T08:54:28Z | |
dc.date.accessioned | 2025-06-25T13:38:39Z | |
dc.date.available | 2022-10-19T15:01:40Z | |
dc.date.issued | 2020-09-19 | |
dc.description.abstract | Let T be a closed linear relation from a Hilbert space H to a Hilbert space K and let B ∈ B(K) be selfadjoint. It will be shown that the relation T∗(I+iB)T is maximal sectorial via a matrix decomposition of B with respect to the orthogonal decomposition H = domT∗⊕mulT. This leads to an explicit expression of the corresponding closed sectorial form. These results include the case where mulT is invariant under B. The more general description makes it possible to give an expression for the extremal maximal sectorial extensions of the sum of sectorial relations. In particular, one can characterize when the form sum extension is extremal. | - |
dc.description.notification | © Springer Nature Switzerland AG 2020. This is a post-peer-review, pre-copyedit version of a book chapter published in Complex Function Theory, Operator Theory, Schur Analysis and Systems Theory. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-44819-6_15 | - |
dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
dc.embargo.lift | 2022-09-19 | |
dc.embargo.terms | 2022-09-19 | |
dc.format.bitstream | true | |
dc.format.content | fi=kokoteksti|en=fulltext| | - |
dc.format.extent | 19 | - |
dc.format.pagerange | 493-514 | - |
dc.identifier.isbn | 978-3-030-44819-6 | - |
dc.identifier.olddbid | 13469 | |
dc.identifier.oldhandle | 10024/11967 | |
dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/2469 | |
dc.identifier.urn | URN:NBN:fi-fe202101262686 | - |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | - |
dc.relation.doi | 10.1007/978-3-030-44819-6_15 | - |
dc.relation.isbn | 978-3-030-44818-9 | - |
dc.relation.ispartof | Complex Function Theory, Operator Theory, Schur Analysis and Systems Theory : A Volume in Honor of V. E. Katsnelson | - |
dc.relation.ispartofseries | Operator Theory: Advances and Applications | - |
dc.relation.issn | 2296-4878 | - |
dc.relation.issn | 0255-0156 | - |
dc.relation.numberinseries | 280 | - |
dc.relation.url | https://doi.org/10.1007/978-3-030-44819-6_15 | - |
dc.source.identifier | Scopus: 85091428375 | - |
dc.source.identifier | https://osuva.uwasa.fi/handle/10024/11967 | |
dc.subject | extremal extension | - |
dc.subject | form sum | - |
dc.subject | Friedrichs extension | - |
dc.subject | Kreı̆n extension | - |
dc.subject | sectorial relation | - |
dc.subject.olddiscipline | Matematiikka | - |
dc.title | A Class of Sectorial Relations and the Associated Closed Forms | - |
dc.type.okm | fi=A3 Kirjan tai muun kokoomateoksen osa|en=A3 Peer-reviewed book section|sv=A3 Del av bok eller annat samlingsverk| | - |
dc.type.publication | article | - |
dc.type.version | acceptedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Hassi_de Snoo_2020.pdf
- Size:
- 3.1 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli