Stacked Ensemble Model for Tropical Cyclone Path Prediction

annif.suggestionsforecasts|weather forecasting|storms|modelling (representation)|machine learning|Pakistan|weather phenomena|whirlwinds|time series|wind|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p11580|http://www.yso.fi/onto/yso/p7362|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p537|http://www.yso.fi/onto/yso/p7360|http://www.yso.fi/onto/yso/p12290|http://www.yso.fi/onto/yso/p7125en
dc.contributor.authorSattar, Kalim
dc.contributor.authorZahra, Syeda Zoupash
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorMissen, Malik Muhammad Saad
dc.contributor.authorBashir, Rab Nawaz
dc.contributor.authorAbbas, Muhammad Zahid
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-03-04T13:36:13Z
dc.date.accessioned2025-06-25T13:13:03Z
dc.date.available2024-03-04T13:36:13Z
dc.date.issued2023-07-06
dc.description.abstractTropical cyclones (TC) are intense circular storms that cause significant economic and human losses in the coastal areas of the equatorial region. Various statistical models have been proposed to forecast the potential path of TC. This study proposes a stacked ensemble-based method to enhance the effectiveness of predicting TC paths using temporal data. The proposed method can be divided into two phases. In the first phase, the Long Short-Term Memory Networks (LSTM) and Gated Recurrent Unit (GRU) models are optimized with stacked layers to determine the most effective configuration for Stacked LSTM and Stacked GRU. In the second phase, k-fold cross-validation is employed to construct multiple Stacked LSTM and Stacked GRU models, and a Meta learner is used to ensemble the predictions from these models. We evaluate the performance of our proposed model using the temporal China Meteorological Administration (CMA) dataset and compare its results with those obtained from other ensemble and non-ensemble techniques. The results demonstrate a significant reduction in mean square error and variance achieved by the proposed model. The code is available on GitHub: TC path prediction-
dc.description.notification©2023 Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.format.pagerange69512-69521-
dc.identifier.olddbid20034
dc.identifier.oldhandle10024/16964
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1714
dc.identifier.urnURN:NBN:fi-fe202403049804-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2023.3292907-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2023.3292907-
dc.relation.volume11-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:001030583100001-
dc.source.identifierScopus:85164427050-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16964
dc.subjectTropical cyclone-
dc.subjectpath prediction-
dc.subjectstacked RNN-
dc.subjectstacked ensemble-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleStacked Ensemble Model for Tropical Cyclone Path Prediction-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Sattar_Zahra_Faheem_Missen_Bashir_Abbas_2023.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat