Performance Evaluation of AI-based Algorithms for Condition Assessment of Power Components

annif.suggestionsmachine learning|artificial intelligence|measurement|electrical engineering|algorithms|evaluation|condition monitoring|monitoring|defects|electrical power networks|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p7413|http://www.yso.fi/onto/yso/p15423|http://www.yso.fi/onto/yso/p3628|http://www.yso.fi/onto/yso/p543|http://www.yso.fi/onto/yso/p7753en
dc.contributor.authorKumar, Haresh
dc.contributor.authorShafiq, Muhammad
dc.contributor.authorKauhaniemi, Kimmo
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-2556-1464-
dc.contributor.orcidhttps://orcid.org/0000-0002-7429-3171-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-02-16T12:19:53Z
dc.date.accessioned2025-06-25T13:57:27Z
dc.date.available2025-01-02T23:00:05Z
dc.date.issued2023-01-02
dc.description.abstractThis study compares the performance of different artificial intelligence (AI) based algorithms/ classifiers used for partial discharge (PD) classification during insulation diagnostics in power components. During PD measurements, a considerable amount of data is collected, and processing such a huge amount of data is time-consuming and expensive. The useful PD signals can be extracted from the measurements, and AI-based algorithms can be used to process those signals for classification and diagnostics purposes. In this work, the data is collected from three different PD sources, namely, corona, internal, and surface in the high voltage laboratory. Each measurement consists of the PD activity captured in the form of power frequency cycles. The single PD pulses are extracted from the measured signals using the segmentation method. For features extraction, at first discrete wavelet transform (DWT) technique is applied on single pulses, and then statistical parameters (mean, standard deviation, skewness, and kurtosis) are applied to the extracted features. To classify different PD sources, two different classifiers, support vector machine (SVM) and k-nearest neighbors (KNN) with their types, are applied to extracted features. The performance of each classifier is evaluated using the accuracy performance indicator by varying the amount of input PD data from each PD source. The developed understanding will enable researchers/asset managers to extract the required amount of data from the field measurements.-
dc.description.notification©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2025-01-02
dc.embargo.terms2025-01-02
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.format.pagerange231-236-
dc.identifier.isbn978-4-88686-431-4-
dc.identifier.olddbid17765
dc.identifier.oldhandle10024/15240
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3068
dc.identifier.urnURN:NBN:fi-fe2023021627554-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceInternational Conference on Condition Monitoring and Diagnosis-
dc.relation.doi10.23919/CMD54214.2022.9991719-
dc.relation.funderEvald and Hilda Nissi Foundation-
dc.relation.funderEstonian Research Council-
dc.relation.grantnumberPSG 632-
dc.relation.ispartof2022 9th International Conference on Condition Monitoring and Diagnosis (CMD)-
dc.relation.issn2644-271X-
dc.relation.urlhttp://doi.org/10.23919/CMD54214.2022.9991719-
dc.source.identifierScopus:85146619138-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15240
dc.subjectpartial discharge-
dc.subjectPerformance Evaluation-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysomachine learning-
dc.subject.ysoartificial intelligence-
dc.subject.ysocondition monitoring-
dc.titlePerformance Evaluation of AI-based Algorithms for Condition Assessment of Power Components-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Kumar_Shafiq_Kauhaniemi_2022.pdf
Size:
764.06 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat