Complementation and Lebesgue-type decompositions of linear operators and relations

annif.suggestionsmathematics|operators|Hilbert space|university libraries|counting|mathematical analysis|function analysis|matrices|linear algebra|quantum physics|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p15714|http://www.yso.fi/onto/yso/p27794|http://www.yso.fi/onto/yso/p10184|http://www.yso.fi/onto/yso/p1382|http://www.yso.fi/onto/yso/p19485|http://www.yso.fi/onto/yso/p6850|http://www.yso.fi/onto/yso/p18099|http://www.yso.fi/onto/yso/p16733|http://www.yso.fi/onto/yso/p5564en
dc.contributor.authorHassi, S.
dc.contributor.authorde Snoo, H. S. V.
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-0102-1087-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-05-06T11:43:13Z
dc.date.accessioned2025-06-25T13:43:30Z
dc.date.available2024-05-06T11:43:13Z
dc.date.issued2024-04-15
dc.description.abstractIn this paper, a new general approach is developed to construct and study Lebesgue-type decompositions of linear operators or relations T in the Hilbert space setting. The new approach allows to introduce an essentially wider class of Lebesgue-type decompositions than what has been studied in the literature so far. The key point is that it allows a nontrivial interaction between the closable and the singular components of T. The motivation to study such decompositions comes from the fact that they naturally occur in the corresponding Lebesgue-type decomposition for pairs of quadratic forms. The approach built in this paper uses so-called complementation in Hilbert spaces, a notion going back to de Branges and Rovnyak.-
dc.description.notification© 2024 The Authors. Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent32-
dc.identifier.olddbid20672
dc.identifier.oldhandle10024/17300
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2623
dc.identifier.urnURN:NBN:fi-fe2024050627035-
dc.language.isoeng-
dc.publisherJohn Wiley & Sons-
dc.relation.doi10.1112/jlms.12900-
dc.relation.ispartofjournalJournal of the London Mathematical Society-
dc.relation.issn1469-7750-
dc.relation.issn0024-6107-
dc.relation.issue5-
dc.relation.urlhttps://doi.org/10.1112/jlms.12900-
dc.relation.volume109-
dc.rightsCC BY 4.0-
dc.source.identifierScopus:85190363461-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17300
dc.subject.disciplinefi=Matematiikka|en=Mathematics|-
dc.titleComplementation and Lebesgue-type decompositions of linear operators and relations-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Hassi_de Snoo_2024.pdf
Size:
382.26 KB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat