ADR-SALD : Attention-Based Deep Residual Sign Agnostic Learning With Derivatives for Implicit Surface Reconstruction

annif.suggestionsdeep learning|neural networks (information technology)|machine learning|artificial intelligence|Three-dimensional imaging|three-dimensionality|optimisation|learning|measurement|modelling (representation)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p26739|http://www.yso.fi/onto/yso/p1978|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p2945|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p3533en
dc.contributor.authorBasher, Abol
dc.contributor.authorBoutellier, Jani
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-6383-493X-
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-06-04T10:13:10Z
dc.date.accessioned2025-06-25T14:04:59Z
dc.date.available2025-06-04T10:13:10Z
dc.date.issued2025-03-06
dc.description.abstractLearning 3D shape directly from raw data (i.e., un-oriented meshes, raw point clouds or triangle soups) and reconstructing high fidelity surfaces are still a difficult problem in computer vision and graphics. Several approaches have been proposed to learn from raw data, however, their reconstruction quality is somewhat limited in capturing small detail. Moreover, they introduce surface sheet in case of big gaps and empty spaces, and struggle in reconstructing small openings and thin structure. In this study, we address these problems by proposing a novel attention-based variational autoencoder architecture, ADR-SALD where the encoder and decoder are constructed based on the idea of residual feature learning and inception-like neural structure. We have adopted two different self attention mechanisms for sign agnostic learning in the encoder, which allow the proposed approach to learn the global spatial contextual dependencies and local features simultaneously for the 3D shape. This novel architecture solves the surface sheet problem of previous approaches such as SALD. Moreover, our experimental results show that ADR-SALD is more successful in reconstructing thin structure than the state-of-the-art approaches SALD and DC-DFFN, and has significant performance in separating small gaps. The proposed approach outperforms the baseline state-of-the-art approaches by reconstruction quality and quantitative measures.-
dc.description.notification© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent17-
dc.format.pagerange44243-44259-
dc.identifier.olddbid23974
dc.identifier.oldhandle10024/19692
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3295
dc.identifier.urnURN:NBN:fi-fe2025060459776-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2025.3549279-
dc.relation.funderScientific Advisory Board for Defense-
dc.relation.grantnumberVN/17548/2023-SAAP-25-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2025.3549279-
dc.relation.volume13-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001445065100026-
dc.source.identifier2-s2.0-105001066987-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19692
dc.subjectImplicit representation learning-
dc.subjectsurface reconstruction-
dc.subjectShapeNet-
dc.subjectD-Faust-
dc.subjectsign agnostic learning-
dc.subjectpoint-wise spatial attention-
dc.subjectneighbor to point attention-
dc.subjectself attention-
dc.subjectconvolutional neural networks-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleADR-SALD : Attention-Based Deep Residual Sign Agnostic Learning With Derivatives for Implicit Surface Reconstruction-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Basher_Boutellier_2025.pdf
Size:
5.62 MB
Format:
Adobe Portable Document Format

Kokoelmat