Decidable Variable-Rate Dataflow for Heterogeneous Signal Processing Systems

annif.suggestionssignal processing|compatibility|parallel publishing|computer programmes|parallel processing|adaptation (change)|systems architecture|data communications|standards|air conditioning|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p9371|http://www.yso.fi/onto/yso/p27097|http://www.yso.fi/onto/yso/p26592|http://www.yso.fi/onto/yso/p12682|http://www.yso.fi/onto/yso/p6137|http://www.yso.fi/onto/yso/p20656|http://www.yso.fi/onto/yso/p5446|http://www.yso.fi/onto/yso/p4513|http://www.yso.fi/onto/yso/p6628en
dc.contributor.authorMa, Yujunrong
dc.contributor.authorWu, Jiahao
dc.contributor.authorBhattacharyya, Shuvra S.
dc.contributor.authorBoutellier, Jani
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-12-14T12:38:06Z
dc.date.accessioned2025-06-25T12:49:28Z
dc.date.available2020-12-14T12:38:06Z
dc.date.issued2020-05-14
dc.description.abstractDynamic dataflow models of computation have become widely used through their adoption to popular programming frameworks such as TensorFlow and GNU Radio. Although dynamic dataflow models offer more programming freedom, they lack analyzability compared to their static counterparts (such as synchronous dataflow). In this paper we advocate the use of a boundedly dynamic dataflow model of computation, VR-PRUNE, that remains analyzable but still offers more programming freedom than a fully static dataflow model. The paper presents the VR-PRUNE model of computation and runtime,and illustrates its applicability to practical signal processing applications by two use cases: an adaptive convolutional neural network, and a predistortion filter for wireless communications. By runtime experiments on two heterogeneous computing platforms we show that VR-PRUNE is both flexible and efficient.-
dc.description.notification©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent5-
dc.format.pagerange1683-1687-
dc.identifier.isbn978-1-5090-6631-5-
dc.identifier.olddbid13176
dc.identifier.oldhandle10024/11766
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/984
dc.identifier.urnURN:NBN:fi-fe20201214100622-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceInternational Conference on Acoustics, Speech, and Signal Processing (ICASSP)-
dc.relation.doi10.1109/ICASSP40776.2020.9054053-
dc.relation.ispartofICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)-
dc.relation.issn2379-190X-
dc.relation.urlhttps://doi.org/10.1109/ICASSP40776.2020.9054053-
dc.source.identifierScopus: 85089220734-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11766
dc.subjectheterogeneous computing-
dc.subjectmodels of computation-
dc.subjectvariable-rate dataflow-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysosignal processing-
dc.titleDecidable Variable-Rate Dataflow for Heterogeneous Signal Processing Systems-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ma_Wu_Bhattacharyya_Boutellier_2020.pdf
Size:
639.3 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat