Optimal scheduling of a virtual power plant with demand response in short-term electricity market
| dc.contributor.author | Rashidizadeh-Kermani, Homa | |
| dc.contributor.author | Vahedipour-Dahraie, Mostafa | |
| dc.contributor.author | Shafie-khah, Miadreza | |
| dc.contributor.author | Osório, Gerardo J. | |
| dc.contributor.author | Catalão, João P. S. | |
| dc.contributor.department | Vebic | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2020-07-30T14:19:21Z | |
| dc.date.accessioned | 2025-06-25T12:42:32Z | |
| dc.date.available | 2020-07-30T14:19:21Z | |
| dc.date.issued | 2020-07-15 | |
| dc.description.abstract | This paper presents an optimal bidding and offering strategy for a virtual power plant (VPP), which participates in day-ahead (DA) and balancing markets. The VPP comprises distributed energy resources, plug-in electric vehicles (PEVs) and flexible demands. The objective of the problem is maximizing the VPP’s profit while demand response (DR) providers who aggregated the loads try to supply the required demand under their jurisdiction with minimum costs. The proposed optimization problem is formulated as a bi-level stochastic scheduling programming to address uncertainties in DA and balancing electricity prices, renewable energy source’s (RES) and DR relationship. Simulation results demonstrate the applicability and effectiveness of the proposed model to any real markets. Also, numerical results show that the flexibility of responsive loads and PEVs can improve the VPP operator's energy management and increase its expected profit. | - |
| dc.description.notification | ©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 6 | - |
| dc.format.pagerange | 599-604 | - |
| dc.identifier.isbn | 978-1-7281-5200-4 | - |
| dc.identifier.olddbid | 12501 | |
| dc.identifier.oldhandle | 10024/11283 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/761 | |
| dc.identifier.urn | URN:NBN:fi-fe2020073047756 | - |
| dc.language.iso | eng | - |
| dc.publisher | IEEE | - |
| dc.relation.conference | IEEE Mediterranean Electrotechnical Conference | - |
| dc.relation.doi | 10.1109/MELECON48756.2020.9140502 | - |
| dc.relation.isbn | 978-1-7281-5201-1 | - |
| dc.relation.ispartof | 2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON) | - |
| dc.relation.ispartofseries | IEEE Mediterranean Electrotechnical Conference | - |
| dc.relation.issn | 2158-8481 | - |
| dc.relation.issn | 2158-8473 | - |
| dc.relation.url | https://doi.org/10.1109/MELECON48756.2020.9140502 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/11283 | |
| dc.subject | demand response | - |
| dc.subject | electricity market | - |
| dc.subject | mixed-integer linear programming | - |
| dc.subject | virtual power plants | - |
| dc.subject | stochastic scheduling | - |
| dc.subject.discipline | fi=Sähkötekniikka|en=Electrical Engineering| | - |
| dc.title | Optimal scheduling of a virtual power plant with demand response in short-term electricity market | - |
| dc.type.okm | fi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation| | - |
| dc.type.publication | conferenceObject | - |
| dc.type.version | acceptedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Rashidizadeh-Kermani_Vahedipour-Dahraie_Shafie-khah_Osório_Catalão_2020_aam.pdf
- Size:
- 3.04 MB
- Format:
- Adobe Portable Document Format
- Description:
- article
