Optimal scheduling of a virtual power plant with demand response in short-term electricity market

dc.contributor.authorRashidizadeh-Kermani, Homa
dc.contributor.authorVahedipour-Dahraie, Mostafa
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorOsório, Gerardo J.
dc.contributor.authorCatalão, João P. S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-07-30T14:19:21Z
dc.date.accessioned2025-06-25T12:42:32Z
dc.date.available2020-07-30T14:19:21Z
dc.date.issued2020-07-15
dc.description.abstractThis paper presents an optimal bidding and offering strategy for a virtual power plant (VPP), which participates in day-ahead (DA) and balancing markets. The VPP comprises distributed energy resources, plug-in electric vehicles (PEVs) and flexible demands. The objective of the problem is maximizing the VPP’s profit while demand response (DR) providers who aggregated the loads try to supply the required demand under their jurisdiction with minimum costs. The proposed optimization problem is formulated as a bi-level stochastic scheduling programming to address uncertainties in DA and balancing electricity prices, renewable energy source’s (RES) and DR relationship. Simulation results demonstrate the applicability and effectiveness of the proposed model to any real markets. Also, numerical results show that the flexibility of responsive loads and PEVs can improve the VPP operator's energy management and increase its expected profit.-
dc.description.notification©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.format.pagerange599-604-
dc.identifier.isbn978-1-7281-5200-4-
dc.identifier.olddbid12501
dc.identifier.oldhandle10024/11283
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/761
dc.identifier.urnURN:NBN:fi-fe2020073047756-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceIEEE Mediterranean Electrotechnical Conference-
dc.relation.doi10.1109/MELECON48756.2020.9140502-
dc.relation.isbn978-1-7281-5201-1-
dc.relation.ispartof2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)-
dc.relation.ispartofseriesIEEE Mediterranean Electrotechnical Conference-
dc.relation.issn2158-8481-
dc.relation.issn2158-8473-
dc.relation.urlhttps://doi.org/10.1109/MELECON48756.2020.9140502-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11283
dc.subjectdemand response-
dc.subjectelectricity market-
dc.subjectmixed-integer linear programming-
dc.subjectvirtual power plants-
dc.subjectstochastic scheduling-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleOptimal scheduling of a virtual power plant with demand response in short-term electricity market-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationconferenceObject-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Rashidizadeh-Kermani_Vahedipour-Dahraie_Shafie-khah_Osório_Catalão_2020_aam.pdf
Size:
3.04 MB
Format:
Adobe Portable Document Format
Description:
article

Kokoelmat