Enhancing cutting tool sustainability based on remaining useful life prediction

annif.suggestionscopyright|sustainable use|forecasts|creativity|parallel publishing|sustainable development|People's Republic of China|sun|tools|parallel universes|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p2346|http://www.yso.fi/onto/yso/p21003|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p8311|http://www.yso.fi/onto/yso/p27097|http://www.yso.fi/onto/yso/p8470|http://www.yso.fi/onto/yso/p104984|http://www.yso.fi/onto/yso/p5051|http://www.yso.fi/onto/yso/p3761|http://www.yso.fi/onto/yso/p37837en
dc.contributor.authorSun, Huibin
dc.contributor.authorLiu, Yang
dc.contributor.authorPan, Junlin
dc.contributor.authorZhang, Jiduo
dc.contributor.authorJi, Wei
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-8006-3236-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-03-17T12:29:46Z
dc.date.accessioned2025-06-25T13:27:41Z
dc.date.available2022-03-17T12:29:46Z
dc.date.issued2020-01-20
dc.description.abstractAs a critical part of machining, cutting tools are of great importance to sustainability enhancement. Normally, they are underused, resulting in huge waste. However, the lack of reliable support leads to a high risk on improving the cutting tool utilization. Aiming at this problem, this paper proposes an approach to enhance the cutting tool sustainability. A non-linear cutting tool remaining useful life prediction model is developed based on tool wear historical data. Probability distribution function and cumulative distribution function are used to quantize the uncertainty of the prediction. Under a constant machining condition, a cutting tool life is extended according to its specific remaining useful life prediction, rather than a unified one. Under various machining conditions, machining parameters are optimized to improve efficiency or capability. Cutting tool sustainability is assessed in economic, environmental and social dimensions. Experimental study verifies that both material removal rate and material removal volume are improved. Carbon emission and cutting tool cost are also reduced. The balance between benefit and risk is achieved by assigning a reasonable confidence level. Cutting tool sustainability can be enhanced by improving cutting tool utilization at controllable risk.-
dc.description.notification©2020 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid15617
dc.identifier.oldhandle10024/13670
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2142
dc.identifier.urnURN:NBN:fi-fe2022031724019-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.jclepro.2019.118794-
dc.relation.funderNational Natural Science Foundation of China-
dc.relation.funderJilin Province Key R&D Plan Project-
dc.relation.funderkey R&D program of Shaanxi Province-
dc.relation.grantnumber51875475-
dc.relation.grantnumber2018ZDXM-GY-068-
dc.relation.ispartofjournalJournal of Cleaner Production-
dc.relation.issn1879-1786-
dc.relation.issn0959-6526-
dc.relation.urlhttps://doi.org/10.1016/j.jclepro.2019.118794-
dc.relation.volume244-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:000503172600100-
dc.source.identifierScopus:85074460490-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13670
dc.subjectCutting tool sustainability enhancement-
dc.subjectCutting tool utilization improvement-
dc.subjectRemaining useful life prediction-
dc.subject.disciplinefi=Tuotantotalous|en=Industrial Management|-
dc.titleEnhancing cutting tool sustainability based on remaining useful life prediction-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Sun_Liu_Pan_Zhang_Ji_2020.pdf
Size:
630.23 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat