HFRAS : design of a high-density feature representation model for effective augmentation of satellite images
| annif.suggestions | remote sensing|machine learning|image processing|automated pattern recognition|modelling (representation)|signal processing|neural networks (information technology)|visualisation|simulation|satellite images|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p2521|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p6449|http://www.yso.fi/onto/yso/p8266|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p7938|http://www.yso.fi/onto/yso/p4787|http://www.yso.fi/onto/yso/p29435 | en |
| dc.contributor.author | Saini, Dipen | |
| dc.contributor.author | Garg, Rachit | |
| dc.contributor.author | Malik, Rahul | |
| dc.contributor.author | Prashar, Deepak | |
| dc.contributor.author | Faheem, M. | |
| dc.contributor.department | Digital Economy | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0003-4628-4486 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2023-11-20T10:56:42Z | |
| dc.date.accessioned | 2025-06-25T13:04:57Z | |
| dc.date.available | 2023-11-20T10:56:42Z | |
| dc.date.issued | 2023-11-11 | |
| dc.description.abstract | Efficiently extracting features from satellite images is crucial for classification and post-processing activities. Many feature representation models have been created for this purpose. However, most of them either increase computational complexity or decrease classification efficiency. The proposed model in this paper initially collects a set of available satellite images and represents them via a hybrid of long short-term memory (LSTM) and gated recurrent unit (GRU) features. These features are processed via an iterative genetic algorithm, identifying optimal augmentation methods for the extracted feature sets. To analyse the efficiency of this optimization process, we model an iterative fitness function that assists in incrementally improving the classification process. The fitness function uses an accuracy & precision-based feedback mechanism, which helps in tuning the hyperparameters of the proposed LSTM & GRU feature extraction process. The suggested model used 100 k images, 60% allocated for training and 20% each designated for validation and testing purposes. The proposed model can increase classification precision by 16.1% and accuracy by 17.1% compared to conventional augmentation strategies. The model also showcased incremental accuracy enhancements for an increasing number of training image sets. | - |
| dc.description.notification | © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 12 | - |
| dc.identifier.olddbid | 19339 | |
| dc.identifier.oldhandle | 10024/16434 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/1464 | |
| dc.identifier.urn | URN:NBN:fi-fe20231120147795 | - |
| dc.language.iso | eng | - |
| dc.publisher | Springer | - |
| dc.relation.doi | 10.1007/s11760-023-02859-7 | - |
| dc.relation.funder | University of Vaasa | - |
| dc.relation.funder | Academy of Finland | - |
| dc.relation.ispartofjournal | Signal, Image and Video Processing | - |
| dc.relation.issn | 1863-1711 | - |
| dc.relation.url | https://doi.org/10.1007/s11760-023-02859-7 | - |
| dc.rights | CC BY 4.0 | - |
| dc.source.identifier | Scopus:85176299402 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/16434 | |
| dc.subject | Classification | - |
| dc.subject | Augmentation | - |
| dc.subject | Long short-term memory | - |
| dc.subject | Gated recurrent unit | - |
| dc.subject.discipline | fi=Tietotekniikka|en=Computer Science| | - |
| dc.subject.yso | satellite images | - |
| dc.title | HFRAS : design of a high-density feature representation model for effective augmentation of satellite images | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Saini_Garg_Malik_Prashar_Faheem_2023.pdf
- Size:
- 885.99 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
