Data-driven Optimal Scheduling of Isolated Microgrid Using Random Forest Regressor

annif.suggestionsoptimisation|renewable energy sources|machine learning|wind energy|distribution of electricity|electrical engineering|electrical power networks|forecasts|microgrids|energy production (process industry)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p39009|http://www.yso.fi/onto/yso/p2384en
dc.contributor.authorZandrazavi, Seyed Farhad
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorPashaei, Meysam
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.orcidhttps://orcid.org/0000-0001-7113-8291-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-12-31T07:11:16Z
dc.date.accessioned2025-06-25T13:54:13Z
dc.date.available2024-12-31T07:11:16Z
dc.date.issued2024-11-20
dc.description.abstractDesign, operation, and planning of Microgrids (MGs) have been enriched by advances in machine learning (ML) techniques and availability of real data. These advancements have significantly improved the accuracy of predictions related to energy demand and renewable generation within MGs. ML-based algorithms can analyze complex patterns in data to make precise forecasts about future energy demands, renewable energy output, and even potential system failures. In this context, this paper utilizes real open-access wind speed dataset from Nottingham to create a forecast model based on a random forest regressor (RFR). This forecasted data, along with actual wind speed for wind power generation, serves as the input for a mixed-integer linear programming model designed for the optimal scheduling of standalone microgrids (OSSM). The results demonstrate that the discrepancies in the total cost, voltage deviation, and power loss of the MG, when comparing forecasted data to actual data, are less than 5%, 1%, and 2%, respectively. These results validate the effectiveness of ML-based models, specifically RFR, in the development of OSSM.-
dc.description.notification©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.identifier.isbn979-8-3503-5518-5-
dc.identifier.olddbid22247
dc.identifier.oldhandle10024/18552
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2963
dc.identifier.urnURN:NBN:fi-fe20241231106838-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceIEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)-
dc.relation.doi10.1109/eeeic/icpseurope61470.2024.10751201-
dc.relation.funderHorizon Europe-
dc.relation.funderFinnish Cultural Foundation-
dc.relation.grantnumber00241288-
dc.relation.isbn979-8-3503-5519-2-
dc.relation.ispartof2024 IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)-
dc.relation.issn2994-9467-
dc.relation.issn2994-9440-
dc.relation.projectid101079242-
dc.relation.urlhttps://doi.org/10.1109/EEEIC/ICPSEurope61470.2024.10751201-
dc.source.identifierScopus:85211923240-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18552
dc.subjectData-driven-
dc.subjectforecast-
dc.subjectrandom forest regressor-
dc.subjectstandalone microgrids-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysomachine learning-
dc.subject.ysoforecasts-
dc.titleData-driven Optimal Scheduling of Isolated Microgrid Using Random Forest Regressor-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Zandrazavi_Shafie-khah_Pashaei_2024.pdf
Size:
456.49 KB
Format:
Adobe Portable Document Format

Kokoelmat