Employee benefits and company performance : Evidence from a high-dimensional machine learning model
| annif.suggestions | employees|efficiency (properties)|accounting|management accounting|employee benefits|enterprises|staff|machine learning|work satisfaction|personnel administration|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p1075|http://www.yso.fi/onto/yso/p8329|http://www.yso.fi/onto/yso/p7621|http://www.yso.fi/onto/yso/p18706|http://www.yso.fi/onto/yso/p6045|http://www.yso.fi/onto/yso/p3128|http://www.yso.fi/onto/yso/p4190|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p1831|http://www.yso.fi/onto/yso/p301 | en |
| dc.contributor.author | Ranta, Mikko | |
| dc.contributor.author | Ylinen, Mika | |
| dc.contributor.department | Digital Economy | - |
| dc.contributor.faculty | fi=Laskentatoimen ja rahoituksen yksikkö|en=School of Accounting and Finance| | - |
| dc.contributor.orcid | https://orcid.org/0000-0002-9096-1635 | - |
| dc.contributor.orcid | https://orcid.org/0000-0003-3441-2129 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2024-08-21T06:07:05Z | |
| dc.date.accessioned | 2025-06-25T13:15:37Z | |
| dc.date.available | 2024-08-21T06:07:05Z | |
| dc.date.issued | 2023-12-27 | |
| dc.description.abstract | By incorporating novel social media data, we analyze in detail how US companies offer different employee benefits and how they are associated with several company performance measures. Benefits such as 401(k), employee discounts, parking, and vision/dental healthcare are the most commonly provided, while free food -related benefits and family-related benefits are the most scarcely offered. Furthermore, with the aid of efficient machine learning -based models and tools from explainable artificial intelligence, we discover that family-related benefits are often associated with the most satisfied employees and best-performing companies. Our findings indicate that high-growth companies tend to provide a broad array of benefits to their employees. In contrast, highly profitable companies often concentrate on delivering a more limited and specialized set of benefits. We argue that companies offer rare and highly sought benefits to keep and recruit high-performers. | - |
| dc.description.notification | © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 15 | - |
| dc.identifier.olddbid | 21358 | |
| dc.identifier.oldhandle | 10024/17977 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/1804 | |
| dc.identifier.urn | URN:NBN:fi-fe2024082165760 | - |
| dc.language.iso | eng | - |
| dc.publisher | Elsevier | - |
| dc.relation.doi | 10.1016/j.mar.2023.100876 | - |
| dc.relation.ispartofjournal | Management Accounting Research | - |
| dc.relation.issn | 1096-1224 | - |
| dc.relation.issn | 1044-5005 | - |
| dc.relation.url | https://doi.org/10.1016/j.mar.2023.100876 | - |
| dc.relation.volume | 64 | - |
| dc.rights | CC BY 4.0 | - |
| dc.source.identifier | Scopus:85181076787 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/17977 | |
| dc.subject | Organizational control | - |
| dc.subject | Explainable AI | - |
| dc.subject | Social media | - |
| dc.subject.discipline | fi=Laskentatoimi ja rahoitus|en=Accounting and Finance| | - |
| dc.subject.yso | employee benefits | - |
| dc.subject.yso | machine learning | - |
| dc.title | Employee benefits and company performance : Evidence from a high-dimensional machine learning model | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Ranta_Ylinen_2024.pdf
- Size:
- 4.44 MB
- Format:
- Adobe Portable Document Format
- Description:
- Article
