Pattern Classification and PSO Optimal Weights Based Sky Images Cloud Motion Speed Calculation Method for Solar PV Power Forecasting

annif.suggestionscalculation methods|electric power|clouds|electrical engineering|sources of energy|imaging|cloud services|natural sciences|forecasts|methods|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p22180|http://www.yso.fi/onto/yso/p1213|http://www.yso.fi/onto/yso/p9786|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p2383|http://www.yso.fi/onto/yso/p3532|http://www.yso.fi/onto/yso/p24167|http://www.yso.fi/onto/yso/p6227|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p1913en
dc.contributor.authorZhen, Zhao
dc.contributor.authorPang, Shuaijie
dc.contributor.authorWang, Fei
dc.contributor.authorLi, Kangping
dc.contributor.authorLi, Zhigang
dc.contributor.authorRen, Hui
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-02-23T11:31:57Z
dc.date.accessioned2025-06-25T12:57:55Z
dc.date.available2021-02-23T11:31:57Z
dc.date.issued2019-03-13
dc.description.abstractThe motion of cloud over a photovoltaic (PV) power station will directly cause the change of solar irradiance, which indirectly affects the prediction of minute-level PV power. Therefore, the calculation of cloud motion speed is very crucial for PV power forecasting. However, due to the influence of complex cloud motion process, it is very difficult to achieve accurate result using a single traditional algorithm. In order to improve the computation accuracy, a pattern classification and particle swarm optimization optimal weights based sky images cloud motion speed calculation method for solar PV power forecasting (PCPOW) is proposed. The method consists of two parts. First, we use a k-means clustering method and texture features based on a gray-level co-occurrence matrix to classify the clouds. Second, for different cloud classes, we build the corresponding combined calculation model to obtain cloud motion speed. Real data recorded at Yunnan Electric Power Research Institute are used for simulation; the results show that the cloud classification and optimal combination model are effective, and the PCPOW can improve the accuracy of displacement calculation.-
dc.description.notification© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.format.pagerange3331-3342-
dc.identifier.olddbid13692
dc.identifier.oldhandle10024/12175
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1239
dc.identifier.urnURN:NBN:fi-fe202102235743-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/TIA.2019.2904927-
dc.relation.ispartofjournalIEEE Transactions on Industry Applications-
dc.relation.issn1939-9367-
dc.relation.issn0093-9994-
dc.relation.issue4-
dc.relation.urlhttps://doi.org/10.1109/TIA.2019.2904927-
dc.relation.volume55-
dc.source.identifierWOS: 000474562900004-
dc.source.identifierScopus: 85068824156-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/12175
dc.subjectCloud Motion Speed-
dc.subjectCombined Modeling-
dc.subjectOptimal Weights-
dc.subjectattern Classification-
dc.subjectSky Image-
dc.subjectPower Forecasting-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titlePattern Classification and PSO Optimal Weights Based Sky Images Cloud Motion Speed Calculation Method for Solar PV Power Forecasting-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Zhen_Pang_Wang_Li_Li_Ren_Shafie-khah_2019.pdf
Size:
17.9 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat