Pattern Classification and PSO Optimal Weights Based Sky Images Cloud Motion Speed Calculation Method for Solar PV Power Forecasting
annif.suggestions | calculation methods|electric power|clouds|electrical engineering|sources of energy|imaging|cloud services|natural sciences|forecasts|methods|en | en |
annif.suggestions.links | http://www.yso.fi/onto/yso/p22180|http://www.yso.fi/onto/yso/p1213|http://www.yso.fi/onto/yso/p9786|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p2383|http://www.yso.fi/onto/yso/p3532|http://www.yso.fi/onto/yso/p24167|http://www.yso.fi/onto/yso/p6227|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p1913 | en |
dc.contributor.author | Zhen, Zhao | |
dc.contributor.author | Pang, Shuaijie | |
dc.contributor.author | Wang, Fei | |
dc.contributor.author | Li, Kangping | |
dc.contributor.author | Li, Zhigang | |
dc.contributor.author | Ren, Hui | |
dc.contributor.author | Shafie-khah, Miadreza | |
dc.contributor.department | Vebic | - |
dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
dc.contributor.orcid | https://orcid.org/0000-0003-1691-5355 | - |
dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
dc.date.accessioned | 2021-02-23T11:31:57Z | |
dc.date.accessioned | 2025-06-25T12:57:55Z | |
dc.date.available | 2021-02-23T11:31:57Z | |
dc.date.issued | 2019-03-13 | |
dc.description.abstract | The motion of cloud over a photovoltaic (PV) power station will directly cause the change of solar irradiance, which indirectly affects the prediction of minute-level PV power. Therefore, the calculation of cloud motion speed is very crucial for PV power forecasting. However, due to the influence of complex cloud motion process, it is very difficult to achieve accurate result using a single traditional algorithm. In order to improve the computation accuracy, a pattern classification and particle swarm optimization optimal weights based sky images cloud motion speed calculation method for solar PV power forecasting (PCPOW) is proposed. The method consists of two parts. First, we use a k-means clustering method and texture features based on a gray-level co-occurrence matrix to classify the clouds. Second, for different cloud classes, we build the corresponding combined calculation model to obtain cloud motion speed. Real data recorded at Yunnan Electric Power Research Institute are used for simulation; the results show that the cloud classification and optimal combination model are effective, and the PCPOW can improve the accuracy of displacement calculation. | - |
dc.description.notification | © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | - |
dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
dc.format.bitstream | true | |
dc.format.content | fi=kokoteksti|en=fulltext| | - |
dc.format.extent | 13 | - |
dc.format.pagerange | 3331-3342 | - |
dc.identifier.olddbid | 13692 | |
dc.identifier.oldhandle | 10024/12175 | |
dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/1239 | |
dc.identifier.urn | URN:NBN:fi-fe202102235743 | - |
dc.language.iso | eng | - |
dc.publisher | IEEE | - |
dc.relation.doi | 10.1109/TIA.2019.2904927 | - |
dc.relation.ispartofjournal | IEEE Transactions on Industry Applications | - |
dc.relation.issn | 1939-9367 | - |
dc.relation.issn | 0093-9994 | - |
dc.relation.issue | 4 | - |
dc.relation.url | https://doi.org/10.1109/TIA.2019.2904927 | - |
dc.relation.volume | 55 | - |
dc.source.identifier | WOS: 000474562900004 | - |
dc.source.identifier | Scopus: 85068824156 | - |
dc.source.identifier | https://osuva.uwasa.fi/handle/10024/12175 | |
dc.subject | Cloud Motion Speed | - |
dc.subject | Combined Modeling | - |
dc.subject | Optimal Weights | - |
dc.subject | attern Classification | - |
dc.subject | Sky Image | - |
dc.subject | Power Forecasting | - |
dc.subject.discipline | fi=Sähkötekniikka|en=Electrical Engineering| | - |
dc.title | Pattern Classification and PSO Optimal Weights Based Sky Images Cloud Motion Speed Calculation Method for Solar PV Power Forecasting | - |
dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
dc.type.publication | article | - |
dc.type.version | acceptedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Zhen_Pang_Wang_Li_Li_Ren_Shafie-khah_2019.pdf
- Size:
- 17.9 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli