Multiobjective optimal power flow using a semidefinite programming-based model

annif.suggestionsoptimisation|mathematical optimisation|Pareto efficiency|programming|application frameworks|mathematics|innovations|power transmission networks|information technology architecture|modelling (creation related to information)en
annif.suggestionsoptimisation|mathematical optimisation|Pareto efficiency|programming|application frameworks|mathematics|innovations|power transmission networks|information technology architecture|modelling (creation related to information)en
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p17635|http://www.yso.fi/onto/yso/p28039|http://www.yso.fi/onto/yso/p4887|http://www.yso.fi/onto/yso/p25000|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p7903|http://www.yso.fi/onto/yso/p7752|http://www.yso.fi/onto/yso/p20655|http://www.yso.fi/onto/yso/p3533en
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p17635|http://www.yso.fi/onto/yso/p28039|http://www.yso.fi/onto/yso/p4887|http://www.yso.fi/onto/yso/p25000|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p7903|http://www.yso.fi/onto/yso/p7752|http://www.yso.fi/onto/yso/p20655|http://www.yso.fi/onto/yso/p3533en
dc.contributor.authorDavoodi, Elnaz
dc.contributor.authorBabaei, Ebrahim
dc.contributor.authorMohammadi-Ivatloo, Behnam
dc.contributor.authorShafie-Khah, Miadreza
dc.contributor.authorCatalão, João P. S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-04-01T12:19:15Z
dc.date.accessioned2025-06-25T12:35:34Z
dc.date.available2020-04-01T12:19:15Z
dc.date.issued2020-03-03
dc.description.abstractIn spite of the significant advance achieved in the development of optimal power flow (OPF) programs, most of the solution methods reported in the literature have considerable difficulties in dealing with different-nature objective functions simultaneously. By leveraging recent progress on the semidefinite programming (SDP) relaxations of OPF, in the present article, attention is focused on modeling a new SDP-based multiobjective OPF (MO-OPF) problem. The proposed OPF model incorporates the classical ϵ-constraint approach through a parameterization strategy to handle the multiple objective functions and produce Pareto front. This article emphasizes the extension of the SDP-based model for MO-OPF problems to generate globally nondominated Pareto optimal solutions with uniform distribution. Numerical results on IEEE 30-, 57-, 118-bus, and Indian utility 62-bus test systems with all security and operating constraints show that the proposed convex model can produce the nondominated solutions with no duality gap in polynomial time, generate efficient Pareto set, and outperform the well-known heuristic methods generally used for the solution of MO-OPF. For instance, in comparison with the obtained results of NSGA-II for the 57-bus test system, the best compromise solution obtained by SDP has 1.55% and 7.42% less fuel cost and transmission losses, respectively.-
dc.description.notification©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent12-
dc.identifier.olddbid11755
dc.identifier.oldhandle10024/10726
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/521
dc.identifier.urnURN:NBN:fi-fe2020040110086-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/JSYST.2020.2971838-
dc.relation.ispartofjournalIEEE systems journal-
dc.relation.issn1937-9234-
dc.relation.issn1932-8184-
dc.relation.urlhttps://doi.org/10.1109/JSYST.2020.2971838-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/10726
dc.subjectconvexification-
dc.subjectmultiobjective OPF (MO-OPF)-
dc.subjectoptimal power flow (OPF)-
dc.subjectsemidefinite programming (SDP)-
dc.subjectε-constraint method-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysooptimisation-
dc.subject.ysomathematical optimisation-
dc.subject.ysoPareto efficiency-
dc.subject.ysoprogramming-
dc.subject.ysoapplication frameworks-
dc.subject.ysomathematics-
dc.subject.ysoinnovations-
dc.subject.ysopower transmission networks-
dc.subject.ysoinformation technology architecture-
dc.subject.ysomodelling (creation related to information)-
dc.titleMultiobjective optimal power flow using a semidefinite programming-based model-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Davoodi_ym_2020.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description:
article

Kokoelmat