Generalized Schur–Nevanlinna functions and their realizations

annif.suggestionsfunctional analysis|mathematics|Hilbert space|space stations|operators|theories|complex-valued functions|equations|functions (mathematical methods)|analytic functions|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p17780|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p27794|http://www.yso.fi/onto/yso/p12612|http://www.yso.fi/onto/yso/p15714|http://www.yso.fi/onto/yso/p127|http://www.yso.fi/onto/yso/p13391|http://www.yso.fi/onto/yso/p3553|http://www.yso.fi/onto/yso/p7097|http://www.yso.fi/onto/yso/p7096en
dc.contributor.authorLilleberg, Lassi
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-11-02T10:58:48Z
dc.date.accessioned2025-06-25T12:49:38Z
dc.date.available2020-11-02T10:58:48Z
dc.date.issued2020-10-03
dc.description.abstractPontryagin space operator valued generalized Schur functions and generalized Nevanlinna functions are investigated by using discrete-time systems, or operator colligations, and state space realizations. It is shown that generalized Schur functions have strong radial limit values almost everywhere on the unit circle. These limit values are contractive with respect to the indefinite inner product, which allows one to generalize the notion of an inner function to Pontryagin space operator valued setting. Transfer functions of self-adjoint systems such that their state spaces are Pontryagin spaces, are generalized Nevanlinna functions, and symmetric generalized Schur functions can be realized as transfer functions of self-adjoint systems with Kreĭn spaces as state spaces. A criterion when a symmetric generalized Schur function is also a generalized Nevanlinna function is given. The criterion involves the negative index of the weak similarity mapping between an optimal minimal realization and its dual. In the special case corresponding to the generalization of an inner function, a concrete model for the weak similarity mapping can be obtained by using the canonical realizations.-
dc.description.notificationThe Author(s) 2020. CC BY 4.0-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent29-
dc.format.pagerange1-29-
dc.identifier.olddbid12863
dc.identifier.oldhandle10024/11498
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/991
dc.identifier.urnURN:NBN:fi-fe2020110288980-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.doi10.1007/s00020-020-02600-w-
dc.relation.ispartofjournalIntegral Equations and Operator Theory-
dc.relation.issn1420-8989-
dc.relation.issn0378-620X-
dc.relation.urlhttps://doi.org/10.1007/s00020-020-02600-w-
dc.relation.volume92-
dc.rightsCC BY 4.0-
dc.source.identifierWOS: 000574745300001-
dc.source.identifierScopus: 85091914826-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11498
dc.subjectOperator colligation-
dc.subjectPassive system-
dc.subjectSelf-adjoint system-
dc.subjectTransfer function-
dc.subjectGeneralized Schur class-
dc.subjectGeneralized Nevanlinna class-
dc.subject.olddisciplineMatemaattiset tieteet-
dc.titleGeneralized Schur–Nevanlinna functions and their realizations-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Lilleberg2020.pdf
Size:
451.63 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat