Analysis of Spatially Modelled High Temperature Polymer Electrolyte Membrane Fuel Cell under Dynamic Load Conditions

dc.contributor.authorKumar, Jagdesh
dc.contributor.authorDevi, Jherna
dc.contributor.authorBhutto, Mustafa Ghulam
dc.contributor.authorParveen, Sajida
dc.contributor.authorShafiq, Muhammad
dc.contributor.departmentInnolab-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2019-10-17T12:51:54Z
dc.date.accessioned2025-06-25T12:21:15Z
dc.date.available2019-10-17T12:51:54Z
dc.date.issued2019-07-03
dc.description.abstractThis paper presents an interesting approach to observe the effects of the load variations on the performance of high temperature polymer electrolyte membrane fuel cell system, such as: hydrogen and air flow rate, output voltage, power and efficiency. The main advantage of this approach is to analyse the internal behaviour of the fuel cell like current-voltage characteristics during energy conversion, when the load is varying dynamically. This approach of power system simulation models fuel cell system by integrating 3D-COMSOL model of high temperature polymer electrolyte membrane fuel cell with MATLAB/Simulink model of the fuel cell system. The MATLAB/Simulink model for the fuel cell system includes the fuel cell stack (single cell), load (sequence of currents), air supply system (air compressor), fuel supply system (hydrogen tank), and power-efficiency block. The MATLAB/Simulink model is developed in such a way that one part behaves as an input model to the 3D-COMSOL model of the fuel cell system, whereas second part behaves as an output model that recovers the results obtained from the 3D-COMSOL of the fuel cell. This approach of power system modelling is useful to show the performance of high temperature polymer electrolyte membrane fuel cell in much better and accurate way.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.format.pagerange121-130-
dc.identifier.olddbid10442
dc.identifier.oldhandle10024/9757
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/97
dc.identifier.urnURN:NBN:fi-fe2019101733552-
dc.language.isoeng-
dc.publisherThe Science and Information Organization-
dc.relation.doi10.14569/IJACSA.2019.0100618-
dc.relation.ispartofjournalInternational Journal of Advanced Computer Science and Applications (IJACSA)-
dc.relation.issn2156-5570-
dc.relation.issn2158-107X-
dc.relation.issue6-
dc.relation.urlhttp://dx.doi.org/10.14569/IJACSA.2019.0100618-
dc.relation.volume10-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/9757
dc.subjectcurrent-voltage characteristics-
dc.subjectenergy conversion-
dc.subjectfuel cells-
dc.subjectpower system modeling-
dc.subjectpower system simulation-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleAnalysis of Spatially Modelled High Temperature Polymer Electrolyte Membrane Fuel Cell under Dynamic Load Conditions-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Kumar_2019a.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat