Multilayer Cyberattacks Identification and Classification Using Machine Learning in Internet of Blockchain (IoBC)-Based Energy Networks

annif.suggestionsmachine learning|renewable energy sources|neural networks (information technology)|information networks|data security|algorithms|distributed systems|energy technology|energy|wireless data transmission|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p12936|http://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p21082|http://www.yso.fi/onto/yso/p10947|http://www.yso.fi/onto/yso/p1310|http://www.yso.fi/onto/yso/p5445en
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorAl-Khasawneh, Mahmoud Ahmad
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-05-14T11:30:55Z
dc.date.accessioned2025-06-25T13:42:16Z
dc.date.available2024-05-14T11:30:55Z
dc.date.issued2024-05-09
dc.description.abstractThe world's need for energy is rising due to factors like population growth, economic expansion, and technological breakthroughs. However, there are major consequences when gas and coal are burnt to meet this surge in energy needs. Although these fossil fuels are still essential for meeting energy demands, their combustion releases a large amount of carbon dioxide and other pollutants into the atmosphere. This significantly jeopardizes community health in addition to exacerbating climate change, thus it is essential need to move swiftly to incorporate renewable energy sources by employing advanced information and communication technologies. However, this change brings up several security issues emphasizing the need for innovative cyber threats detection and prevention solutions. Consequently, this study presents bigdata sets obtained from the solar and wind powered distributed energy systems through the blockchain-based energy networks in the smart grid (SG). A hybrid machine learning (HML) model that combines both the Deep Learning (DL) and Long-Short-Term-Memory (LSTM) models characteristics is developed and applied to identify the unique patterns of Denial of Service (DoS) and Distributed Denial of Service (DDoS) cyberattacks in the power generation, transmission, and distribution processes. The presented big datasets are essential and significantly helps in identifying and classifying cyberattacks, leading to predicting the accurate energy systems behavior in the SG.-
dc.description.notification© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent24-
dc.identifier.olddbid20868
dc.identifier.oldhandle10024/17407
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2584
dc.identifier.urnURN:NBN:fi-fe2024051430452-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.dib.2024.110461-
dc.relation.funderAcademy of Finland-
dc.relation.grantnumber2708102611-
dc.relation.ispartofjournalData in Brief-
dc.relation.issn2352-3409-
dc.relation.urlhttps://doi.org/10.1016/j.dib.2024.110461-
dc.relation.volume54-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17407
dc.subjectCybersecurity-
dc.subjectBlockchain-
dc.subjectDeep learning-
dc.subjectLong short-term memory-
dc.subjectRenewable energy-
dc.subjectSmart grid-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleMultilayer Cyberattacks Identification and Classification Using Machine Learning in Internet of Blockchain (IoBC)-Based Energy Networks-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Faheem_Al-Khasawneh_2024.pdf
Size:
2.96 MB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat