Cyber Intrusion Detection System Based on a Multiobjective Binary Bat Algorithm for Feature Selection and Enhanced Bat Algorithm for Parameter Optimization in Neural Networks

annif.suggestionsalgorithms|data security|machine learning|information networks|cyber security|cyber attacks|neural networks (information technology)|best available technology|information technology|Pakistan|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p12936|http://www.yso.fi/onto/yso/p26189|http://www.yso.fi/onto/yso/p27466|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p19907|http://www.yso.fi/onto/yso/p5462|http://www.yso.fi/onto/yso/p105965en
dc.contributor.authorGhanem, Waheed Ali H. M.
dc.contributor.authorGhaleb, Sanaa Abduljabbar Ahmed
dc.contributor.authorJantan, Aman
dc.contributor.authorNasser, Abdullah B.
dc.contributor.authorSaleh, Sami Abdulla Mohsen
dc.contributor.authorNgah, Amir
dc.contributor.authorAlhadi, Arifah Che
dc.contributor.authorArshad, Humaira
dc.contributor.authorSaad, Abdul-Malik H. Y.
dc.contributor.authorOmolara, Abiodun Esther
dc.contributor.authorEl-Ebiary, Yousef A. Baker
dc.contributor.authorAbiodun, Oludare Isaac
dc.contributor.departmentInnolab-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-5377-999X-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-12-28T12:17:15Z
dc.date.accessioned2025-06-25T13:40:15Z
dc.date.available2022-12-28T12:17:15Z
dc.date.issued2022-07-19
dc.description.abstractThe staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more dependable protection systems, including effective intrusion detection system (IDS) mechanisms which are equipped for boosting accurately detected threats and limiting erroneously detected threats simultaneously. Nonetheless, the proficiency of the IDS framework depends essentially on extracted features from network traffic and an effective classifier of the traffic into abnormal or normal traffic. The prime impetus of this study is to increase the performance of the IDS on networks by building a two-phase framework to reinforce and subsequently enhance detection rate and diminish the rate of false alarm. The initial stage utilizes the developed algorithm of a proficient wrapper-approach-based feature selection which is created on a multi-objective BAT algorithm (MOBBAT). The subsequent stage utilizes the features obtained from the initial stage to categorize the traffic based on the newly upgraded BAT algorithm (EBAT) for training multilayer perceptron (EBATMLP), to improve the IDS performance. The resulting methodology is known as the (MOB-EBATMLP). The efficiency of our proposition has been assessed by utilizing the mainstream benchmarked datasets: NLS-KDD, ISCX2012, UNSW-NB15, KDD CUP 1999, and CICIDS2017 which are established as standard datasets for evaluating IDS. The outcome of our experimental analysis demonstrates a noteworthy advancement in network IDS above other techniques.-
dc.description.notification©2022 the Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent22-
dc.format.pagerange76318-76339-
dc.identifier.olddbid17465
dc.identifier.oldhandle10024/14919
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2508
dc.identifier.urnURN:NBN:fi-fe2022122873953-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2022.3192472-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2022.3192472-
dc.relation.volume10-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:000831066600001-
dc.source.identifierScopus:85135221673-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/14919
dc.subjectbat algorithm (BAT)-
dc.subjectfeature selection (FS)-
dc.subjectIntrusion detection system (IDS)-
dc.subjectmetaheuristic algorithm (MA)-
dc.subjectmulti-objective optimization (MOO)-
dc.subjectmultilayer perceptron (MLP)-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleCyber Intrusion Detection System Based on a Multiobjective Binary Bat Algorithm for Feature Selection and Enhanced Bat Algorithm for Parameter Optimization in Neural Networks-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ghanem_Ghaleb_Jantan_Nasser_Saleh_Ngah_Alhadi_Arshad_Saad_Omolara_El-Ebiary_Abiodun_2022.pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat