A Race for Long Horizon Bankruptcy Prediction

dc.contributor.authorAltman, Edward I.
dc.contributor.authorIwanicz-Drozdowska, Małgorzata
dc.contributor.authorLaitinen, Erkki K.
dc.contributor.authorSuvas, Arto
dc.contributor.facultyfi=Laskentatoimen ja rahoituksen yksikkö|en=School of Accounting and Finance|-
dc.contributor.orcidhttps://orcid.org/0000-0002-9169-7709-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-02-03T06:56:52Z
dc.date.accessioned2025-06-25T12:51:28Z
dc.date.available2021-08-27T00:00:27Z
dc.date.issued2020-02-27
dc.description.abstractThis study compares the accuracy and efficiency of five different estimation methods for predicting financial distress of small and medium-sized enterprises. We apply different methods for a large set of financial and non-financial variables, using filter and wrapper selection, to predict bankruptcy up to 10 years before the event in an open, European economy. Our findings show that logistic regression and neural networks are superior to other approaches. We document how the cost-return ratio considerably affects the location of optimal cut-off points and attainable profit in credit decisions. Once a loan provider selects a particular prediction model, an effort should be made to find the optimal cut-off score to maximize the efficiency of the technique. Indeed, this often involves determining several cut-off levels where the portfolio of products and services exhibits different cost-return characteristics.-
dc.description.notification© 2020 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Applied Economics on 27 Feb 2020, available online: http://www.tandfonline.com/10.1080/00036846.2020.1730762-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2021-08-27
dc.embargo.terms2021-08-27
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent20-
dc.format.pagerange1466-4283-
dc.identifier.olddbid13559
dc.identifier.oldhandle10024/12049
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1043
dc.identifier.urnURN:NBN:fi-fe202102033584-
dc.language.isoeng-
dc.publisherTaylor & Francis-
dc.relation.doi10.1080/00036846.2020.1730762-
dc.relation.ispartofjournalApplied Economics-
dc.relation.issn1466-4283-
dc.relation.issn0003-6846-
dc.relation.issue37-
dc.relation.urlhttps://doi.org/10.1080/00036846.2020.1730762-
dc.relation.volume52-
dc.source.identifierWOS: 000517376800001-
dc.source.identifierScopus: 85080141156-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/12049
dc.subjectcost-return ratio-
dc.subjectcut-off-
dc.subjectestimation technique-
dc.subjectSMEs-
dc.subjectvariable selection-
dc.subject.disciplinefi=Laskentatoimi ja rahoitus|en=Accounting and Finance|-
dc.titleA Race for Long Horizon Bankruptcy Prediction-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Altman_Iwanicz-Drozdowska_Laitinen_Suvas_2020.pdf
Size:
17.71 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat