Efficient System Identification of a Two-Wheeled Robot (TWR) Using Feed-Forward Neural Networks
annif.suggestions | neural networks (information technology)|control engineering|mathematical models|robots|signal processing|simulation|system theory|MATLAB|dynamics|machine learning|en | en |
annif.suggestions.links | http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p5636|http://www.yso.fi/onto/yso/p11401|http://www.yso.fi/onto/yso/p2619|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p4787|http://www.yso.fi/onto/yso/p13479|http://www.yso.fi/onto/yso/p12929|http://www.yso.fi/onto/yso/p4095|http://www.yso.fi/onto/yso/p21846 | en |
dc.contributor.author | Khan, Muhammad Aseer | |
dc.contributor.author | Baig, Dur-e-Zehra | |
dc.contributor.author | Ali, Husan | |
dc.contributor.author | Ashraf, Bilal | |
dc.contributor.author | Khan, Shahbaz | |
dc.contributor.author | Wadood, Abdul | |
dc.contributor.author | Kamal, Tariq | |
dc.contributor.department | Vebic | - |
dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
dc.contributor.orcid | https://orcid.org/0000-0002-5686-1331 | - |
dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
dc.date.accessioned | 2022-11-30T11:56:58Z | |
dc.date.accessioned | 2025-06-25T13:37:32Z | |
dc.date.available | 2022-11-30T11:56:58Z | |
dc.date.issued | 2022-11-02 | |
dc.description.abstract | System identification of a Two-Wheeled Robot (TWR) through nonlinear dynamics is carried out in this paper using a data-driven approach. An Artificial Neural Network (ANN) is used as a kinematic estimator for predicting the TWR’s degree of movement in the directions of x and y and the angle of rotation Ψ along the z-axis by giving a set of input vectors in terms of linear velocity ‘V’ (i.e., generated through the angular velocity ‘ω’ of a DC motor). The DC motor rotates the TWR’s wheels that have a wheel radius of ‘r’. Training datasets are achieved via simulating nonlinear kinematics of the TWR in a MATLAB Simulink environment by varying the linear scale sets of ‘V’ and ‘(r ± ∆r)’. Perturbation of the TWR’s wheel radius at ∆r = 10% is introduced to cater to the robustness of the TWR wheel kinematics. A trained ANN accurately modeled the kinematics of the TWR. The performance indicators are regression analysis and mean square value, whose achieved values met the targeted values of 1 and 0.01, respectively. | - |
dc.description.notification | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | - |
dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
dc.format.bitstream | true | |
dc.format.content | fi=kokoteksti|en=fulltext| | - |
dc.format.extent | 9 | - |
dc.identifier.olddbid | 17210 | |
dc.identifier.oldhandle | 10024/14793 | |
dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/2432 | |
dc.identifier.urn | URN:NBN:fi-fe2022113068285 | - |
dc.language.iso | eng | - |
dc.publisher | MDPI | - |
dc.relation.doi | 10.3390/electronics11213584 | - |
dc.relation.ispartofjournal | Electronics | - |
dc.relation.issn | 2079-9292 | - |
dc.relation.issue | 21 | - |
dc.relation.url | https://doi.org/10.3390/electronics11213584 | - |
dc.relation.volume | 11 | - |
dc.rights | CC BY 4.0 | - |
dc.source.identifier | WOS:000883864700001 | - |
dc.source.identifier | Scopus:85141703914 | - |
dc.source.identifier | https://osuva.uwasa.fi/handle/10024/14793 | |
dc.subject | multiple-input multiple-output (MIMO) | - |
dc.subject | system identification | - |
dc.subject | neural network implementation | - |
dc.subject | neural networks | - |
dc.subject | nonlinear systems | - |
dc.subject | two-wheeled robot (TWR) | - |
dc.subject | multi-layer perceptron | - |
dc.subject.discipline | fi=Sähkötekniikka|en=Electrical Engineering| | - |
dc.title | Efficient System Identification of a Two-Wheeled Robot (TWR) Using Feed-Forward Neural Networks | - |
dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
dc.type.publication | article | - |
dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Khan_Baig_Ali_Ashraf_Khan_Wadood_Kamal_2022.pdf
- Size:
- 1.08 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli