Efficient System Identification of a Two-Wheeled Robot (TWR) Using Feed-Forward Neural Networks

annif.suggestionsneural networks (information technology)|control engineering|mathematical models|robots|signal processing|simulation|system theory|MATLAB|dynamics|machine learning|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p5636|http://www.yso.fi/onto/yso/p11401|http://www.yso.fi/onto/yso/p2619|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p4787|http://www.yso.fi/onto/yso/p13479|http://www.yso.fi/onto/yso/p12929|http://www.yso.fi/onto/yso/p4095|http://www.yso.fi/onto/yso/p21846en
dc.contributor.authorKhan, Muhammad Aseer
dc.contributor.authorBaig, Dur-e-Zehra
dc.contributor.authorAli, Husan
dc.contributor.authorAshraf, Bilal
dc.contributor.authorKhan, Shahbaz
dc.contributor.authorWadood, Abdul
dc.contributor.authorKamal, Tariq
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-5686-1331-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-11-30T11:56:58Z
dc.date.accessioned2025-06-25T13:37:32Z
dc.date.available2022-11-30T11:56:58Z
dc.date.issued2022-11-02
dc.description.abstractSystem identification of a Two-Wheeled Robot (TWR) through nonlinear dynamics is carried out in this paper using a data-driven approach. An Artificial Neural Network (ANN) is used as a kinematic estimator for predicting the TWR’s degree of movement in the directions of x and y and the angle of rotation Ψ along the z-axis by giving a set of input vectors in terms of linear velocity ‘V’ (i.e., generated through the angular velocity ‘ω’ of a DC motor). The DC motor rotates the TWR’s wheels that have a wheel radius of ‘r’. Training datasets are achieved via simulating nonlinear kinematics of the TWR in a MATLAB Simulink environment by varying the linear scale sets of ‘V’ and ‘(r ± ∆r)’. Perturbation of the TWR’s wheel radius at ∆r = 10% is introduced to cater to the robustness of the TWR wheel kinematics. A trained ANN accurately modeled the kinematics of the TWR. The performance indicators are regression analysis and mean square value, whose achieved values met the targeted values of 1 and 0.01, respectively.-
dc.description.notification© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent9-
dc.identifier.olddbid17210
dc.identifier.oldhandle10024/14793
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2432
dc.identifier.urnURN:NBN:fi-fe2022113068285-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.doi10.3390/electronics11213584-
dc.relation.ispartofjournalElectronics-
dc.relation.issn2079-9292-
dc.relation.issue21-
dc.relation.urlhttps://doi.org/10.3390/electronics11213584-
dc.relation.volume11-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:000883864700001-
dc.source.identifierScopus:85141703914-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/14793
dc.subjectmultiple-input multiple-output (MIMO)-
dc.subjectsystem identification-
dc.subjectneural network implementation-
dc.subjectneural networks-
dc.subjectnonlinear systems-
dc.subjecttwo-wheeled robot (TWR)-
dc.subjectmulti-layer perceptron-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleEfficient System Identification of a Two-Wheeled Robot (TWR) Using Feed-Forward Neural Networks-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Khan_Baig_Ali_Ashraf_Khan_Wadood_Kamal_2022.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat