Analyzing and Quantifying the Intrinsic Distributional Robustness of CVaR Reformulation for Chance Constrained Stochastic Programs

annif.suggestionsoptimisation|probability|probability calculation|reliability (general)|econometrics|mathematics|water analysis|qualification|laboratory research|laboratories|enen
annif.suggestionsoptimisation|probability|probability calculation|reliability (general)|econometrics|mathematics|water analysis|qualification|laboratory research|laboratories|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p16014|http://www.yso.fi/onto/yso/p4746|http://www.yso.fi/onto/yso/p1629|http://www.yso.fi/onto/yso/p13480|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p9185|http://www.yso.fi/onto/yso/p9363|http://www.yso.fi/onto/yso/p6757|http://www.yso.fi/onto/yso/p8598en
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p16014|http://www.yso.fi/onto/yso/p4746|http://www.yso.fi/onto/yso/p1629|http://www.yso.fi/onto/yso/p13480|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p9185|http://www.yso.fi/onto/yso/p9363|http://www.yso.fi/onto/yso/p6757|http://www.yso.fi/onto/yso/p8598en
dc.contributor.authorCao, Yang
dc.contributor.authorWei, Wei
dc.contributor.authorMei, Shengwei
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorCatalao, Joao P.S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-10-14T06:54:29Z
dc.date.accessioned2025-06-25T12:45:02Z
dc.date.available2020-10-14T06:54:29Z
dc.date.issued2020-09-02
dc.description.abstractChance constrained program (CCP) is a popular stochastic optimization method in power system planning and operation problems. Conditional Value-at-Risk (CVaR) provides a convex approximation for chance constraints which are nonconvex. Although CCP assumes an exact empirical distribution, and the optimum of a stochastic programming model is thought to be sensitive in the designated probability distribution, this letter discloses that CVaR reformulation of chance constraint is intrinsically robust. A pair of indices are proposed to quantify the maximum tolerable perturbation of the probability distribution, and can be computed from a computationally-cheap dichotomy search. An example on the coordinated capacity optimization of energy storage and transmission line for a remote wind farm validates the main claims. The above results demonstrate that stochastic optimization methods are not necessarily vulnerable to distributional uncertainty, and justify the positive effect of the conservatism brought by the CVaR reformulation.-
dc.description.notification©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent4-
dc.format.pagerange1-4-
dc.identifier.olddbid12727
dc.identifier.oldhandle10024/11457
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/839
dc.identifier.urnURN:NBN:fi-fe2020101484048-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/TPWRS.2020.3021285-
dc.relation.ispartofjournalIEEE Transactions on Power Systems-
dc.relation.issn1558-0679-
dc.relation.issn0885-8950-
dc.relation.urlhttps://doi.org/10.1109/TPWRS.2020.3021285-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11457
dc.subjectchance constraint-
dc.subjectconditional-value-at-risk-
dc.subjectdistributional robustness-
dc.subjectstochastic optimization-
dc.subjectuncertainty-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleAnalyzing and Quantifying the Intrinsic Distributional Robustness of CVaR Reformulation for Chance Constrained Stochastic Programs-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Cao_Wei_Mei_Shafie-khah_Catalao_2020.pdf
Size:
302.22 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat