PROVOKE : Toxicity trigger detection in conversations from the top 100 subreddits

annif.suggestionssocial media|online communities|toxicity|Internet|networks (societal phenomena)|networking (making contacts)|machine learning|conversation|network communication|direct use|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20774|http://www.yso.fi/onto/yso/p23472|http://www.yso.fi/onto/yso/p12637|http://www.yso.fi/onto/yso/p20405|http://www.yso.fi/onto/yso/p5570|http://www.yso.fi/onto/yso/p20000|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p14004|http://www.yso.fi/onto/yso/p14112|http://www.yso.fi/onto/yso/p7599en
dc.contributor.authorAlmerekhi, Hind
dc.contributor.authorKwak, Haewoon
dc.contributor.authorSalminen, Joni
dc.contributor.authorJansen, Bernard J.
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Markkinoinnin ja viestinnän yksikkö|en=School of Marketing and Communication|-
dc.contributor.orcidhttps://orcid.org/0000-0003-3230-0561-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-01-18T11:43:53Z
dc.date.accessioned2025-06-25T12:24:42Z
dc.date.available2023-01-18T11:43:53Z
dc.date.issued2022-12-11
dc.description.abstractPromoting healthy discourse on community-based online platforms like Reddit can be challenging, especially when conversations show ominous signs of toxicity. Therefore, in this study, we find the turning points (i.e., toxicity triggers) making conversations toxic. Before finding toxicity triggers, we built and evaluated various machine learning models to detect toxicity from Reddit comments. Subsequently, we used our best-performing model, a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model that achieved an area under the receiver operating characteristic curve (AUC) score of 0.983 to detect toxicity. Next, we constructed conversation threads and used the toxicity prediction results to build a training set for detecting toxicity triggers. This procedure entailed using our large-scale dataset to refine toxicity triggers' definition and build a trigger detection dataset using 991,806 conversation threads from the top 100 communities on Reddit. Then, we extracted a set of sentiment shift, topical shift, and context-based features from the trigger detection dataset, using them to build a dual embedding biLSTM neural network that achieved an AUC score of 0.789. Our trigger detection dataset analysis showed that specific triggering keywords are common across all communities, like ‘racist’ and ‘women’. In contrast, other triggering keywords are specific to certain communities, like ‘overwatch’ in r/Games. Implications are that toxicity trigger detection algorithms can leverage generic approaches but must also tailor detections to specific communities.-
dc.description.notification© 2022 Wuhan University. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent21-
dc.identifier.olddbid17610
dc.identifier.oldhandle10024/15075
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/186
dc.identifier.urnURN:NBN:fi-fe202301183527-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.dim.2022.100019-
dc.relation.funderQatar National Research Fund-
dc.relation.ispartofjournalData and Information Management-
dc.relation.issn2543-9251-
dc.relation.issue4-
dc.relation.urlhttps://doi.org/10.1016/j.dim.2022.100019-
dc.relation.volume6-
dc.rightsCC BY 4.0-
dc.source.identifierScopus:85139638316-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15075
dc.subjectOnline toxicity-
dc.subjectConversation threads-
dc.subjectReddit-
dc.subjectToxicity triggers-
dc.subjectNeural networks-
dc.subject.disciplinefi=Markkinointi|en=Marketing|-
dc.subject.ysosocial media-
dc.titlePROVOKE : Toxicity trigger detection in conversations from the top 100 subreddits-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Almerekhi_Kwak_Salminen_Jansen_2022.pdf
Size:
2.99 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat