TBPos: Dataset for Large-Scale Precision Visual Localization

annif.suggestionsvisualisation|pictures|databases|algorithms|image processing|automated pattern recognition|image analysis|robots|pictorial communication|precision|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p7938|http://www.yso.fi/onto/yso/p1149|http://www.yso.fi/onto/yso/p3056|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p6449|http://www.yso.fi/onto/yso/p8266|http://www.yso.fi/onto/yso/p16870|http://www.yso.fi/onto/yso/p2619|http://www.yso.fi/onto/yso/p7941|http://www.yso.fi/onto/yso/p20173en
dc.contributor.authorFahim, Masud
dc.contributor.authorSöchting, Ilona
dc.contributor.authorFerranti, Luca
dc.contributor.authorKannala, Juho
dc.contributor.authorBoutellier, Jani
dc.contributor.departmentDigital Economy-
dc.contributor.editorGade, Rikke
dc.contributor.editorFelsberg, Michael
dc.contributor.editorKämäräinen, Joni-Kristian
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-10-12T10:04:27Z
dc.date.accessioned2025-06-25T13:02:42Z
dc.date.available2024-04-27T22:00:13Z
dc.date.issued2023-04-27
dc.description.abstractImage based localization is a classical computer vision challenge, with several well-known datasets. Generally, datasets consist of a visual 3D database that captures the modeled scenery, as well as query images whose 3D pose is to be discovered. Usually the query images have been acquired with a camera that differs from the imaging hardware used to collect the 3D database; consequently, it is hard to acquire accurate ground truth poses between query images and the 3D database. As the accuracy of visual localization algorithms constantly improves, precise ground truth becomes increasingly important. This paper proposes TBPos, a novel large-scale visual dataset for image based positioning, which provides query images with fully accurate ground truth poses: both the database images and the query images have been derived from the same laser scanner data. In the experimental part of the paper, the proposed dataset is evaluated by means of an image-based localization pipeline.-
dc.description.notification©2023 Springer. This is a post-peer-review, pre-copyedit version of an article published in Image Analysis: SCIA 2023. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-031-31435-3_6-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2024-04-27
dc.embargo.terms2024-04-27
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent11-
dc.format.pagerange84–94-
dc.identifier.isbn978-3-031-31435-3-
dc.identifier.olddbid19147
dc.identifier.oldhandle10024/16346
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1405
dc.identifier.urnURN:NBN:fi-fe20231012139903-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.conferenceScandinavian Conference on Image Analysis (SCIA) 2023-
dc.relation.doi10.1007/978-3-031-31435-3_6-
dc.relation.funderAcademy of Finland-
dc.relation.grantnumber327912-
dc.relation.isbn978-3-031-31434-6-
dc.relation.ispartofImage Analysis: SCIA 2023-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.relation.issn1611-3349-
dc.relation.issn0302-9743-
dc.relation.numberinseries13885-
dc.relation.urlhttps://doi.org/10.1007/978-3-031-31435-3_6-
dc.source.identifierScopus:85161406166-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16346
dc.subjectVisual localization-
dc.subject6DoF pose-
dc.subjectDataset-
dc.subjectComputer vision-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleTBPos: Dataset for Large-Scale Precision Visual Localization-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Fahim_Söchting_Ferranti_Kannala_Boutellier_2023.pdf
Size:
17.92 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat