Machine learning and wearable devices for Phonocardiogram-based diagnosis

annif.suggestionssignal processing|machine learning|learning|information technology|pattern recognition|mathematical models|trains|computer science|measurement|modelling (creation related to information)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p2945|http://www.yso.fi/onto/yso/p5462|http://www.yso.fi/onto/yso/p8266|http://www.yso.fi/onto/yso/p11401|http://www.yso.fi/onto/yso/p5483|http://www.yso.fi/onto/yso/p21029|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p3533en
dc.contributor.authorAbdelmageed, Shaima
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentDigital Economy-
dc.contributor.editorMeghanathan, Natarajan
dc.contributor.editorNagamalai, Dhinaharan
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-02-22T14:17:09Z
dc.date.accessioned2025-06-25T12:56:18Z
dc.date.available2021-02-22T14:17:09Z
dc.date.issued2019
dc.description.abstractThe heart sound signal, Phonocardiogram (PCG) is difficult to interpret even for experienced cardiologists. Interpretation are very subjective depending on the hearing ability of the physician. mHealth has been the adopted approach towards simplifying that and getting quick diagnosis using mobil devices. However, it has been challenging due to the required high quality of data, high computation load, and high-power consumption. The aim of this paper is to diagnose the heart condition based on Phonocardiogram analysis using Machine Learning techniques assuming limited processing power to be encapsulated later in a wearable device. The cardiovascular system is modelled in a transfer function to provide PCG signal recording as it would be recorded at the wrist. The signal is, then, decomposed using filter bank and the analysed using discriminant function. The results showed that PCG with a 19 dB Signal-to-Noise-Ratio can lead to 97.33% successful diagnosis. The same decomposed signal is then analysed using pattern recognition neural network, and the classification was 100% successful with 83.3% trust level.-
dc.description.notification© CS & IT-CSCP 2019-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.format.pagerange59-68-
dc.identifier.isbn978-1-925953-02-2-
dc.identifier.olddbid13682
dc.identifier.oldhandle10024/12170
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1185
dc.identifier.urnURN:NBN:fi-fe202102225649-
dc.language.isoeng-
dc.publisherAIRCC-
dc.relation.conferenceInternational Conference on Artificial Intelligence and Application-
dc.relation.doi10.5121/csit.2019.90606-
dc.relation.ispartof6th International Conference on Artificial Intelligence and Applications (AIAP-2019), May 25-26, 2019, Vancouver, Canada-
dc.relation.ispartofseriesComputer science and information technology-
dc.relation.issn2231-5403-
dc.relation.numberinseries9(6)-
dc.relation.urlhttp://doi.org/10.5121/csit.2019.90606-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/12170
dc.subjectanalysis-
dc.subjectclassification-
dc.subjectdata quality-
dc.subjectdiagnosis-
dc.subjectfilter banks-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.titleMachine learning and wearable devices for Phonocardiogram-based diagnosis-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Abdelmageed_Elmusrati_2019.pdf
Size:
702.94 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat