A novel energy optimization framework to enhance the performance of sensor nodes in Industry 4.0

annif.suggestionsenergy consumption (energy technology)|sensors|industry|Internet of things|energy efficiency|wireless networks|energy|energy production (process industry)|artificial intelligence|renewable energy sources|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p2382|http://www.yso.fi/onto/yso/p11460|http://www.yso.fi/onto/yso/p998|http://www.yso.fi/onto/yso/p27206|http://www.yso.fi/onto/yso/p8328|http://www.yso.fi/onto/yso/p24221|http://www.yso.fi/onto/yso/p1310|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p20762en
dc.contributor.authorSivakumar, Sangeetha
dc.contributor.authorLogeshwaran, Jaganathan
dc.contributor.authorKannadasan, Raju
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorRavikumar, Dhanasekar
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-09-06T12:31:21Z
dc.date.accessioned2025-06-25T13:50:05Z
dc.date.available2024-09-06T12:31:21Z
dc.date.issued2024-01-02
dc.description.abstractIndustry 4.0 is a term used to refer to the fourth industrial revolution, characterized by the introduction of new technologies, such as the Internet of Things, Big Data, and artificial intelligence (AI). As the number of connected devices in industrial settings grows, energy optimization of such sensors becomes increasingly essential. This paper proposes an energy optimization framework for sensor nodes in Industry 4.0. The framework is based on energy efficiency, energy conservation, and energy harvesting principles. It is designed to optimize the energy consumption of sensor nodes while maintaining their performance. The framework includes dynamic power management, scheduling, and harvesting techniques to reduce energy consumption while maintaining performance. In addition, the framework provides a comprehensive approach to energy optimization, including advanced analytics and AI to predict energy consumption and optimize energy use. The proposed model reached 96.93% sensitivity, 91.36% false discovery rate, 11.28% false omission rate, 90.12% prevalence threshold, and 91.24% threat score. The proposed framework is expected to improve the performance of sensor nodes in Industry 4.0, enabling increased efficiency and cost savings.-
dc.description.notification© 2024 The Authors. Energy Science & Engineering published by Society of Chemical Industry and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent25-
dc.format.pagerange835-859-
dc.identifier.olddbid21456
dc.identifier.oldhandle10024/18055
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2824
dc.identifier.urnURN:NBN:fi-fe2024090669670-
dc.language.isoeng-
dc.publisherJohn Wiley & Sons-
dc.relation.doi10.1002/ese3.1657-
dc.relation.funderUniversity of Vaasa-
dc.relation.funderAcademy of Finland-
dc.relation.ispartofjournalEnergy Science & Engineering-
dc.relation.issn2050-0505-
dc.relation.issue3-
dc.relation.urlhttps://doi.org/10.1002/ese3.1657-
dc.relation.volume12-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001134758000001-
dc.source.identifierScopus:85181209139-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18055
dc.subjectbig data-
dc.subjectenergy scheduling-
dc.subjectIndustry 4.0-
dc.subjectIoT-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysoInternet of things-
dc.subject.ysoartificial intelligence-
dc.titleA novel energy optimization framework to enhance the performance of sensor nodes in Industry 4.0-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Sivakumar_Logeshwaran_Kannadasan_Faheem_Ravikumar_2024.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat