Evaluation of Optimization Algorithms for Customers Load Schedule

annif.suggestionsalgorithms|optimisation|renewable energy sources|electrical power networks|smart grids|production of electricity|electricity consumption|distribution of electricity|load|simulation|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p5561|http://www.yso.fi/onto/yso/p15953|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p17226|http://www.yso.fi/onto/yso/p4787en
dc.contributor.authorDiaba, Sayawu Yakubu
dc.contributor.authorElmusrati, Mohammed
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.departmentDigital Economy-
dc.contributor.editorAo, S. I.
dc.contributor.editorCastillo, Oscar
dc.contributor.editorDouglas, Craig
dc.contributor.editorFeng, David Dagan
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/ 0000-0001-9304-6590-
dc.contributor.orcidhttps://orcid.org/ 0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-03-29T12:57:48Z
dc.date.accessioned2025-06-25T13:31:06Z
dc.date.available2022-03-29T12:57:48Z
dc.date.issued2021
dc.description.abstractThis paper introduces a novel concept for customer load scheduling in the Smart Grid (SG). The concept is based on the forthcoming internet of things (IoT). Approximate optimization algorithms are deduced for optimum customer load scheduling, maximization of electric power suppliers performance, and fairness in scheduling customers load. Using these approximate optimization algorithms as constraints, some loads are given priority. Other loads are scheduled in order to control the maximum demand load and electricity bills. To evaluate the effectiveness of the algorithms, we utilize the Mixed Integer Linear Programming (MILP). Simulations are carried out and the impact on reducing the peak-to-average power ratio (PAPR), the electricity bills, and ensuring fairness in customers load schedules are investigated. Simulation results establish that our algorithms significantly cut down on electricity bills, maximizes utility performance, and deliver fairness in customers load schedules.-
dc.description.notification©2021 International Association of Engineers (IAENG).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.format.pagerange122-127-
dc.identifier.isbn978-988-14049-1-6-
dc.identifier.olddbid15739
dc.identifier.oldhandle10024/13747
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2245
dc.identifier.urnURN:NBN:fi-fe2022032925901-
dc.language.isoeng-
dc.publisherInternational Association of Engineers (IAENG)-
dc.publisherNewswood Limited-
dc.relation.conferenceInternational MultiConference of Engineers and Computer Scientists-
dc.relation.ispartofProceedings of the International MultiConference of Engineers and Computer Scientists 2021-
dc.relation.issn2078-0966-
dc.relation.issn2078-0958-
dc.relation.urlhttp://www.iaeng.org/publication/IMECS2021/IMECS2021_pp122-127.pdf-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13747
dc.subjectDemand response (DR)-
dc.subjectelectric vehicle (EV)-
dc.subjectInternet of Things-
dc.subjectload scheduling-
dc.subjectmixed integer linear programming-
dc.subjectmixed integer linear programming optimization algorithms-
dc.subjectower management system (PMS)-
dc.subjectSmart grid-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.titleEvaluation of Optimization Algorithms for Customers Load Schedule-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Diaba_Elmusrati_Shafie-khah_2021.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat