Can You Trust Your Pose? Confidence Estimation in Visual Localization

annif.suggestionslocationing|pictorial communication|visual communication|trust|visualisation|pictures|computer vision|visuality|photography|digital photography and cinematography|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p6230|http://www.yso.fi/onto/yso/p7941|http://www.yso.fi/onto/yso/p7937|http://www.yso.fi/onto/yso/p1725|http://www.yso.fi/onto/yso/p7938|http://www.yso.fi/onto/yso/p1149|http://www.yso.fi/onto/yso/p2618|http://www.yso.fi/onto/yso/p20198|http://www.yso.fi/onto/yso/p1979|http://www.yso.fi/onto/yso/p37857en
dc.contributor.authorFerranti, Luca
dc.contributor.authorLi, Xiaotian
dc.contributor.authorBoutellier, Jani
dc.contributor.authorKannala, Juho
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyDigital Economy-
dc.contributor.orcidhttps://orcid.org/0000-0001-5588-0920-
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-01-12T14:24:18Z
dc.date.accessioned2025-06-25T13:23:28Z
dc.date.issued2021-05-05
dc.description.abstractCamera pose estimation in large-scale environments is still an open question and, despite recent promising results, it may still fail in some situations. The research so far has focused on improving subcomponents of estimation pipelines, to achieve more accurate poses. However, there is no guarantee for the result to be correct, even though the correctness of pose estimation is critically important in several visual localization applications, such as in autonomous navigation. In this paper we bring to attention a novel research question, pose confidence estimation, where we aim at quantifying how reliable the visually estimated pose is. We develop a novel confidence measure to fulfill this task and show that it can be flexibly applied to different datasets, indoor or outdoor, and for various visual localization pipelines. We also show that the proposed techniques can be used to accomplish a secondary goal: improving the accuracy of existing pose estimation pipelines. Finally, the proposed approach is computationally light-weight and adds only a negligible increase to the computational effort of pose estimation.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.notificationThis work was partially funded by the Academy of Finland project 309903 CoEfNet. We acknowledge the computational resources provided by the Aalto Science-IT project and CSC -IT Center for Science, Finland.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent8-
dc.format.pagerange5004-5011-
dc.identifier.isbn978-1-7281-8808-9-
dc.identifier.olddbid15345
dc.identifier.oldhandle10024/13412
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2027
dc.identifier.urnURN:NBN:fi-fe202201122085-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceInternational Conference on Pattern Recognition-
dc.relation.doi10.1109/ICPR48806.2021.9413234-
dc.relation.funderThe Academy of Finland-
dc.relation.grantnumber327912-
dc.relation.ispartof2020 25th International Conference on Pattern Recognition (ICPR)-
dc.relation.issn1051-4651-
dc.relation.urlhttps://doi.org/10.1109/ICPR48806.2021.9413234-
dc.source.identifierScopus: 85110443279-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13412
dc.titleCan You Trust Your Pose? Confidence Estimation in Visual Localization-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ferranti_Li_Boutellier_Kannala_2021.pdf
Size:
3.53 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat