Machine Learning for LEO and MEO Satellite Orbit Prediction

annif.suggestionssatellite navigation|machine learning|universities|automation|information technology|information networks|forecasts|institutions of higher education|artificial intelligence|Vaasa|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p19374|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p10895|http://www.yso.fi/onto/yso/p11477|http://www.yso.fi/onto/yso/p5462|http://www.yso.fi/onto/yso/p12936|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p1030|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p94466en
dc.contributor.authorSelvan, Kannan
dc.contributor.authorSiemuri, Akpojoto
dc.contributor.authorProl, Fabricio S.
dc.contributor.authorVälisuo, Petri
dc.contributor.authorKuusniemi, Heidi
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-9157-7611-
dc.contributor.orcidhttps://orcid.org/0000-0002-2644-1985-
dc.contributor.orcidhttps://orcid.org/0000-0002-9566-6408-
dc.contributor.orcidhttps://orcid.org/0000-0002-7551-9531-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-12-12T10:53:58Z
dc.date.accessioned2025-06-25T13:56:56Z
dc.date.available2024-12-12T10:53:58Z
dc.date.issued2024-10-10
dc.description.abstractAccurate orbit prediction plays a significant role in many space geodesy applications, including space situational awareness, orbital maneuvers, and satellite navigation in real-time scenarios. The traditional orbit prediction approach includes analytical and numerical algorithms to accurately propagate the satellites’ state and associated uncertainties. However, these methods are based on limited dynamic models and may have limitations in accurately capturing the complex dynamics of satellite motion. With the rapid growth in computing power and the development of advanced machine learning (ML) and deep learning (DL) algorithms, there has been growing interest in leveraging ML algorithms to enhance orbit prediction accuracy. In this study, we investigate the potential of using different ML algorithms for the orbit prediction of low Earth orbit (LEO) satellites. We also extend our analysis to medium Earth orbit (MEO) satellites. LEO Swarm-A satellite’s precise orbit products and MEO GNSS satellites’ final ephemeris products are used. The datasets are pre-processed and used in training various ML models. The ML models are then used to estimate the position and velocity of the LEO and MEO satellites. The accuracy of both LEO Swarm-A satellite and MEO GNSS satellites’ using various ML models are compared and discussed. Overall, the standalone ML-based method holds significant promise for improving orbit prediction accuracy and reliability for SWARM-A satellite and GNSS satellites, ultimately enhancing the performance and efficiency of space-based applications and services.-
dc.description.notification©2024 Author(s). Published by Institute of Navigation.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent16-
dc.format.pagerange3556-3571-
dc.identifier.isbn978-0-936406-39-8-
dc.identifier.olddbid22065
dc.identifier.oldhandle10024/18450
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3048
dc.identifier.urnURN:NBN:fi-fe20241212101991-
dc.language.isoeng-
dc.publisherInstitute of Navigation-
dc.relation.conferenceInternational Technical Meeting of the Satellite Division of The Institute of Navigation-
dc.relation.doi10.33012/2024.19765-
dc.relation.ispartofProceedings of the 37th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2024)-
dc.relation.issn2331-5954-
dc.relation.urlhttps://doi.org/10.33012/2024.19765-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18450
dc.subjectOrbit prediction-
dc.subjectLow-Earth-Orbit-
dc.subjectMedium-Earth Orbit-
dc.subjectGlobal Navigation Satellite Systems-
dc.subjectEphemeris-
dc.subject.disciplinefi=Automaatiotekniikka|en=Automation Technology|-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysomachine learning-
dc.titleMachine Learning for LEO and MEO Satellite Orbit Prediction-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Selvan_Siemuri_Prol_Välisuo_Kuusniemi_2024.pdf
Size:
982.85 KB
Format:
Adobe Portable Document Format

Kokoelmat