Advanced-stage tongue squamous cell carcinoma : a machine learning model for risk stratification and treatment planning
| annif.suggestions | forecasts|cancerous diseases|tongue cancer|squamous cell carcinoma|surgical treatment|machine learning|patients|radiotherapy|oral cancer|relapse|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p678|http://www.yso.fi/onto/yso/p16988|http://www.yso.fi/onto/yso/p27078|http://www.yso.fi/onto/yso/p842|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p8357|http://www.yso.fi/onto/yso/p15892|http://www.yso.fi/onto/yso/p16044|http://www.yso.fi/onto/yso/p37984 | en |
| dc.contributor.author | Alabi, Rasheed Omobolaji | |
| dc.contributor.author | Elmusrati, Mohammed | |
| dc.contributor.author | Leivo, Ilmo | |
| dc.contributor.author | Almangush, Alhadi | |
| dc.contributor.author | Mäkitie, Antti A. | |
| dc.contributor.department | Digital Economy | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0001-9304-6590 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2023-07-07T09:56:13Z | |
| dc.date.accessioned | 2025-06-25T12:34:52Z | |
| dc.date.available | 2024-02-15T23:00:08Z | |
| dc.date.issued | 2023-02-15 | |
| dc.description.abstract | Background A significant number of tongue squamous cell carcinoma (TSCC) patients are diagnosed at late stage. Objectives We primarily aimed to develop a machine learning (ML) model based on ensemble ML paradigm to stratify advanced-stage TSCC patients into the likelihood of overall survival (OS) for evidence-based treatment. We compared the survival outcome of patients who received either surgical treatment only (Sx) or surgery combined with postoperative radiotherapy (Sx + RT) or postoperative chemoradiotherapy (Sx + CRT). Material and Methods A total of 428 patients from Surveillance, Epidemiology, and End Results (SEER) database were reviewed. Kaplan-Meier and Cox proportional hazards models examine OS. In addition, a ML model was developed for OS likelihood stratification. Results Age, marital status, N stage, Sx, and Sx + CRT were considered significant. Patients with Sx + RT showed better OS than Sx + CRT or Sx alone. A similar result was obtained for T3N0 subgroup. For T3N1 subgroup, Sx + CRT appeared more favorable for 5-year OS. In T3N2 and T3N3 subgroups, the numbers of patients were small to make insightful conclusions. The OS predictive ML model showed an accuracy of 86.3% for OS likelihood prediction. Conclusions and Significance Patients stratified as having high likelihood of OS may be managed with Sx + RT. Further external validation studies are needed to confirm these results. | - |
| dc.description.notification | ©2023 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Acta Oto-laryngologica on 15 Feb 2023, available online: http://www.tandfonline.com/10.1080/00016489.2023.2172208 | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.embargo.lift | 2024-02-15 | |
| dc.embargo.terms | 2024-02-15 | |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 9 | - |
| dc.format.pagerange | 206-214 | - |
| dc.identifier.olddbid | 18890 | |
| dc.identifier.oldhandle | 10024/16077 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/503 | |
| dc.identifier.urn | URN:NBN:fi-fe2023070790438 | - |
| dc.language.iso | eng | - |
| dc.publisher | Taylor & Francis | - |
| dc.relation.doi | 10.1080/00016489.2023.2172208 | - |
| dc.relation.funder | Minerva Foundation: Selma and Maja-Lisa Selander’s Fund for Research | - |
| dc.relation.funder | Finska Läkaresällskapet, The Sigrid Jusélius Foundation | - |
| dc.relation.funder | The Helsinki University Hospital Research Fund | - |
| dc.relation.ispartofjournal | Acta Oto-laryngologica | - |
| dc.relation.issn | 1651-2251 | - |
| dc.relation.issn | 0001-6489 | - |
| dc.relation.issue | 3 | - |
| dc.relation.url | https://doi.org/10.1080/00016489.2023.2172208 | - |
| dc.relation.volume | 143 | - |
| dc.source.identifier | WOS:000935810200001 | - |
| dc.source.identifier | Scopus:85148453187 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/16077 | |
| dc.subject | chemoradiotherapy | - |
| dc.subject | machine learning | - |
| dc.subject | overall survival | - |
| dc.subject | radiation | - |
| dc.subject | SEER | - |
| dc.subject | surgery | - |
| dc.subject.discipline | fi=Tietoliikennetekniikka|en=Telecommunications Engineering| | - |
| dc.subject.yso | tongue cancer | - |
| dc.subject.yso | radiotherapy | - |
| dc.title | Advanced-stage tongue squamous cell carcinoma : a machine learning model for risk stratification and treatment planning | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | acceptedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Alabi_Elmusrati_Leivo_Almangush_Mäkitie_2023.pdf
- Size:
- 933.01 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
