Advanced-stage tongue squamous cell carcinoma : a machine learning model for risk stratification and treatment planning

annif.suggestionsforecasts|cancerous diseases|tongue cancer|squamous cell carcinoma|surgical treatment|machine learning|patients|radiotherapy|oral cancer|relapse|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p678|http://www.yso.fi/onto/yso/p16988|http://www.yso.fi/onto/yso/p27078|http://www.yso.fi/onto/yso/p842|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p8357|http://www.yso.fi/onto/yso/p15892|http://www.yso.fi/onto/yso/p16044|http://www.yso.fi/onto/yso/p37984en
dc.contributor.authorAlabi, Rasheed Omobolaji
dc.contributor.authorElmusrati, Mohammed
dc.contributor.authorLeivo, Ilmo
dc.contributor.authorAlmangush, Alhadi
dc.contributor.authorMäkitie, Antti A.
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-07-07T09:56:13Z
dc.date.accessioned2025-06-25T12:34:52Z
dc.date.available2024-02-15T23:00:08Z
dc.date.issued2023-02-15
dc.description.abstractBackground A significant number of tongue squamous cell carcinoma (TSCC) patients are diagnosed at late stage. Objectives We primarily aimed to develop a machine learning (ML) model based on ensemble ML paradigm to stratify advanced-stage TSCC patients into the likelihood of overall survival (OS) for evidence-based treatment. We compared the survival outcome of patients who received either surgical treatment only (Sx) or surgery combined with postoperative radiotherapy (Sx + RT) or postoperative chemoradiotherapy (Sx + CRT). Material and Methods A total of 428 patients from Surveillance, Epidemiology, and End Results (SEER) database were reviewed. Kaplan-Meier and Cox proportional hazards models examine OS. In addition, a ML model was developed for OS likelihood stratification. Results Age, marital status, N stage, Sx, and Sx + CRT were considered significant. Patients with Sx + RT showed better OS than Sx + CRT or Sx alone. A similar result was obtained for T3N0 subgroup. For T3N1 subgroup, Sx + CRT appeared more favorable for 5-year OS. In T3N2 and T3N3 subgroups, the numbers of patients were small to make insightful conclusions. The OS predictive ML model showed an accuracy of 86.3% for OS likelihood prediction. Conclusions and Significance Patients stratified as having high likelihood of OS may be managed with Sx + RT. Further external validation studies are needed to confirm these results.-
dc.description.notification©2023 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Acta Oto-laryngologica on 15 Feb 2023, available online: http://www.tandfonline.com/10.1080/00016489.2023.2172208-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2024-02-15
dc.embargo.terms2024-02-15
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent9-
dc.format.pagerange206-214-
dc.identifier.olddbid18890
dc.identifier.oldhandle10024/16077
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/503
dc.identifier.urnURN:NBN:fi-fe2023070790438-
dc.language.isoeng-
dc.publisherTaylor & Francis-
dc.relation.doi10.1080/00016489.2023.2172208-
dc.relation.funderMinerva Foundation: Selma and Maja-Lisa Selander’s Fund for Research-
dc.relation.funderFinska Läkaresällskapet, The Sigrid Jusélius Foundation-
dc.relation.funderThe Helsinki University Hospital Research Fund-
dc.relation.ispartofjournalActa Oto-laryngologica-
dc.relation.issn1651-2251-
dc.relation.issn0001-6489-
dc.relation.issue3-
dc.relation.urlhttps://doi.org/10.1080/00016489.2023.2172208-
dc.relation.volume143-
dc.source.identifierWOS:000935810200001-
dc.source.identifierScopus:85148453187-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16077
dc.subjectchemoradiotherapy-
dc.subjectmachine learning-
dc.subjectoverall survival-
dc.subjectradiation-
dc.subjectSEER-
dc.subjectsurgery-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysotongue cancer-
dc.subject.ysoradiotherapy-
dc.titleAdvanced-stage tongue squamous cell carcinoma : a machine learning model for risk stratification and treatment planning-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Alabi_Elmusrati_Leivo_Almangush_Mäkitie_2023.pdf
Size:
933.01 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat