Brownian Bridges on Polygons

annif.suggestionsstochastic processes|mathematics|probability|probability calculation|bridges|diffusion|art music|bridge building|architects|Markov chains|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p11400|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p16014|http://www.yso.fi/onto/yso/p4746|http://www.yso.fi/onto/yso/p14830|http://www.yso.fi/onto/yso/p18009|http://www.yso.fi/onto/yso/p18434|http://www.yso.fi/onto/yso/p15307|http://www.yso.fi/onto/yso/p4299|http://www.yso.fi/onto/yso/p13075en
dc.contributor.authorSottinen, Tommi
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.editorReimann, David
dc.contributor.editorNorton, Douglas
dc.contributor.editorTorrence, Eve
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-9983-9708-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-09-08T07:41:42Z
dc.date.accessioned2025-06-25T13:30:38Z
dc.date.available2022-09-08T07:41:42Z
dc.date.issued2022
dc.description.abstractThere are no straight lines or sharp corners in nature, said the famous Catalan architect Antoni Gaudí. The famous Polish–French–American mathematician Benoit B. Mandelbrot went even further and asserted that the curves in nature are fractal. Inspired by Mandelbrot’s assertion, we consider regular shapes with edges replaced by stochastic fractals. In particular, we consider equilateral triangles, squares, and pentagons where the edges are replaced by realizations of different Brownian bridges: a “normal” Brownian bridge, a reflective Brownian bridge, and a sticky Brownian bridge.-
dc.description.notification© 2022 the Author.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent4-
dc.format.pagerange453-456-
dc.identifier.isbn978-1-938664-42-7-
dc.identifier.olddbid16794
dc.identifier.oldhandle10024/14548
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2226
dc.identifier.urnURN:NBN:fi-fe2022090857837-
dc.language.isoeng-
dc.publisherTessellations Publishing-
dc.relation.conferenceBridges world conference-
dc.relation.ispartofProceedings of Bridges 2022 : Mathematics, Art, Music, Architecture, Culture-
dc.relation.ispartofseriesBridges Conference Proceedings-
dc.relation.issn1099-6702-
dc.relation.urlhttps://archive.bridgesmathart.org/2022/bridges2022-453.pdf-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/14548
dc.subject.disciplinefi=Matematiikka|en=Mathematics|-
dc.titleBrownian Bridges on Polygons-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Sottinen_2022.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat