A novel switched model predictive control of wind turbines using artificial neural network-Markov chains prediction with load mitigation

annif.suggestionswind energy|control engineering|turbines|renewable energy sources|adjustment systems|wind power stations|wind turbines|adjustment|electrical engineering|control theory|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p5636|http://www.yso.fi/onto/yso/p8184|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p15400|http://www.yso.fi/onto/yso/p6952|http://www.yso.fi/onto/yso/p28964|http://www.yso.fi/onto/yso/p13641|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p868en
dc.contributor.authorPervez, Mahum
dc.contributor.authorKamal, Tariq
dc.contributor.authorFernández-Ramírez, Luis M.
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-5686-1331-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-03-22T11:43:24Z
dc.date.accessioned2025-06-25T13:30:59Z
dc.date.available2022-03-22T11:43:24Z
dc.date.issued2022-03
dc.description.abstractThe existing model predictive control algorithm based on continuous control using quadratic programming is currently one of the most used modern control strategies applied to wind turbines. However, heavy computational time involved and complexity in implementation are still obstructions in existing model predictive control algorithm. Owing to this, a new switched model predictive control technique is developed for the control of wind turbines with the ability to reduce complexity while maintaining better efficiency. The proposed technique combines model predictive control operating on finite control set and artificial intelligence with reinforcement techniques (Markov Chains, MC) to design a new effective control law which allows to achieve the control objectives in different wind speed zones with minimization of computational complexity. The proposed method is compared with the existing model predictive control algorithm, and it has been found that the proposed algorithm is better in terms of computational time, load mitigation, and dynamic response. The proposed research is a forward step towards refining modern control techniques to achieve optimization in nonlinear process control using novel hybrid structures based on conventional control laws and artificial intelligence.-
dc.description.notification© 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.identifier.olddbid15654
dc.identifier.oldhandle10024/13692
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2241
dc.identifier.urnURN:NBN:fi-fe2022032224350-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.asej.2021.09.004-
dc.relation.ispartofjournalAin Shams Engineering Journal-
dc.relation.issn2090-4495-
dc.relation.issn2090-4479-
dc.relation.issue2-
dc.relation.urlhttps://doi.org/10.1016/j.asej.2021.09.004-
dc.relation.volume13-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierScopus:85115650790-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13692
dc.subjectModel predictive control MPC-
dc.subjectFinite control set-
dc.subjectArtificial neural networks-Markov chain ANN-MC-
dc.subjectLoad mitigation-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleA novel switched model predictive control of wind turbines using artificial neural network-Markov chains prediction with load mitigation-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Pervez_Kamal_Fernández-Ramírez_2022.pdf
Size:
3.46 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat