Minimizing Collision of Fading Channel Using Machine Learning

annif.suggestionsmachine learning|wireless networks|wireless technology|paper machines|protocols|information networks|wireless data transmission|learning|data transfer|data security|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p24221|http://www.yso.fi/onto/yso/p23070|http://www.yso.fi/onto/yso/p10598|http://www.yso.fi/onto/yso/p9894|http://www.yso.fi/onto/yso/p12936|http://www.yso.fi/onto/yso/p5445|http://www.yso.fi/onto/yso/p2945|http://www.yso.fi/onto/yso/p5429|http://www.yso.fi/onto/yso/p5479en
dc.contributor.authorAlhaddad, Mohaned H.
dc.contributor.authorSati, Salem
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-03-30T05:19:13Z
dc.date.accessioned2025-06-25T13:24:24Z
dc.date.available2023-11-23T23:00:06Z
dc.date.issued2021-11-23
dc.description.abstractEnergy consumption is considered the main challenge of MAC protocol design. Especially when MAC protocol is employed in an environment of limited energy resources as a wireless sensor network. Parameters optimization of the shared channel in sensor communications is the aim of any MAC protocol designer. In this paper, we suggest a machine learning-based approach for the improvement of the performance parameters using channel prediction learning. Channel predication learning ensures that all the learning process is done by the node. The proposed machine learning algorithm takes into consideration the fading channel parameters and suggests a solution that is best suited to optimize the performance parameters. The proposed machine learning approach incorporates the use of Sensor-MAC (SMAC) protocol and suggests the best tuned MAC protocol based on the supervised learning GRNN algorithm. We investigate the system performance using simulation scenarios under various configurations. The overall performance improvement is more than 80% based on all the output performance parameters.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-11-23
dc.embargo.terms2023-11-23
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.format.pagerange306-311-
dc.identifier.isbn978-1-6654-2469-1-
dc.identifier.olddbid15741
dc.identifier.oldhandle10024/13750
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2055
dc.identifier.urnURN:NBN:fi-fe2022033025971-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceIEEE Microwave Theory and Techniques in Wireless Communications-
dc.relation.doi10.1109/MTTW53539.2021.9607085-
dc.relation.isbn978-1-6654-2470-7 DOI: 10.1109/MTTW53539.2021.9607085 Publisher: IEEE C-
dc.relation.ispartof2021 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW)-
dc.relation.urlhttps://doi.org/10.1109/MTTW53539.2021.9607085-
dc.source.identifierScopus:85123196363-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13750
dc.subjectChannel Fading-
dc.subjectCollision Ratio-
dc.subjectPerformance Metrics-
dc.subjectSMAC Protocol-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysomachine learning-
dc.titleMinimizing Collision of Fading Channel Using Machine Learning-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Alhaddad_Sati_Elmusrati_2021.pdf
Size:
329.83 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat