Machine Learning Utilization in GNSS : Use Cases, Challenges and Future Applications

annif.suggestionsmachine learning|satellite navigation|algorithms|artificial intelligence|big data|autonomous vehicles|indoor positioning|information and communications technology|data security|data mining|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p19374|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p27202|http://www.yso.fi/onto/yso/p29485|http://www.yso.fi/onto/yso/p27620|http://www.yso.fi/onto/yso/p20743|http://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p5520en
dc.contributor.authorSiemuri, Akpojoto
dc.contributor.authorKuusniemi, Heidi
dc.contributor.authorElmusrati, Mohammed S.
dc.contributor.authorVälisuo, Petri
dc.contributor.authorShamsuzzoha, Ahm
dc.contributor.departmentDigital Economy-
dc.contributor.facultyDigital Economy-
dc.contributor.orcidhttps://orcid.org/0000-0002-7551-9531-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.orcidhttps://orcid.org/0000-0002-9566-6408-
dc.contributor.orcidhttps://orcid.org/0000-0002-4219-0688-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-09-16T11:20:37Z
dc.date.accessioned2025-06-25T13:16:29Z
dc.date.available2023-06-15T22:00:12Z
dc.date.issued2021-06-15
dc.description.abstractThe algorithms and models of traditional global navigation satellite systems (GNSSs) perform very well in terms of the availability and accuracy of positioning, navigation and timing (PNT) under good signal conditions. Research is still ongoing to improve their robustness and performance in less than optimal signal environments. A growing interest in the study of machine learning (ML) and the potential for its application in many fields has also led to several types of research on its utilization in GNSSs. In the field of GNSSs, ML is changing the ways that navigation problems are prevented and resolved, and it is taking on a significant role in advancing PNT technologies for the future. We illustrate this point by reviewing how ML can enhance GNSS performance and usability and also discuss areas of GNSSs in which ML algorithms have been applied. We also highlight the commonly implemented ML algorithms and compare their performance when used in similar GNSS use cases. In addition, the challenges and risks of the utilization of ML techniques in GNSSs are discussed. Insight is given into prospective areas in GNSSs in which ML can be applied for increased performance, accuracy and robustness, thereby providing fertile ground for novel research.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-06-15
dc.embargo.terms2023-06-15
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.isbn978-1-7281-9644-2-
dc.identifier.olddbid14862
dc.identifier.oldhandle10024/13086
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1827
dc.identifier.urnURN:NBN:fi-fe2021091646389-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceInternational Conference on Localization and GNSS (ICL-GNSS)-
dc.relation.doi10.1109/ICL-GNSS51451.2021.9452295-
dc.relation.ispartof2021 International Conference on Localization and GNSS (ICL-GNSS)-
dc.relation.ispartofseriesInternational Conference on Localization and GNSS-
dc.relation.issn2325-0771-
dc.relation.issn2325-0747-
dc.relation.urlhttps://doi.org/10.1109/ICL-GNSS51451.2021.9452295-
dc.source.identifierScopus: 85112867784-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13086
dc.subjectDeep Learning (DL)-
dc.subjectGlobal Navigation Satellite Systems (GNSSs)-
dc.subjectGNSS performance-
dc.subjectPNT technologies-
dc.subject.ysomachine learning-
dc.titleMachine Learning Utilization in GNSS : Use Cases, Challenges and Future Applications-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Siemuri_Kuusniemi_Elmusrati_Välisuo_Shamsuzzoha_2021.pdf
Size:
553.54 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat