Improved Zero-Shot Image Editing via Null-Toon and Directed Delta Denoising Score

annif.suggestionsimage processing|algorithms|automated pattern recognition|imaging|noise (radio technology)|editing|machine learning|optimisation|neural networks (information technology)|deep learning|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p6449|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p8266|http://www.yso.fi/onto/yso/p3532|http://www.yso.fi/onto/yso/p19269|http://www.yso.fi/onto/yso/p19873|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p39324en
dc.contributor.authorFahim, Masud An Nur Islam
dc.contributor.authorBoutellier, Jani
dc.contributor.departmentDigital Economy-
dc.contributor.editorAntonacopoulos, Apostolos
dc.contributor.editorChaudhuri, Subhasis
dc.contributor.editorChellappa, Rama
dc.contributor.editorLiu, Cheng-Lin
dc.contributor.editorBhattacharya, Saumik
dc.contributor.editorPal, Umapada
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-0295-5965-
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-06-04T11:34:03Z
dc.date.accessioned2025-06-25T14:05:04Z
dc.date.issued2024-12-03
dc.description.abstractRecently, there has been a rapid surge in the utilization of diffusion models for customized image generation and editing tasks, especially using zero-shot editing algorithms that can largely operate on given images regardless of their source domain. This work is based on two well-known zero-shot image editing algorithms: Null Text Inversion (NTI) and Delta Denoising Score (DDS). With respect to NTI, we mainly focus on image cartoonization, which has received less attention in the context of text-guided image editing. In a nutshell, we propose a customized reconstruction phase for NTI, which helps transforming the natural input image into cartoon images with desired customization by supporting parameters. We also improve the current DDS optimization baseline and propose the Directed Delta Denoising Score (DDDS). Our DDDS algorithm offers a better image editing experience by replacing the target text prompt with the proposed directed text prompt. Computing directed text prompt requires one subtraction operation and yields significant reconstruction improvement over DDS. To demonstrate the effectiveness of our contributions, the paper presents both quantitative and qualitative comparisons against the state-of-the-art, as well as several visual examples.-
dc.description.notification©2024 Springer. This is a post-peer-review, pre-copyedit version of an article published in Pattern Recognition: 27th International Conference, ICPR 2024, Kolkata, India, December 1–5, 2024, Proceedings, Part VI. The final authenticated version is available online at: https://doi.org/10.1007/978-3-031-78172-8_20-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2025-12-03
dc.embargo.terms2025-12-03
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent15-
dc.format.pagerange309–323-
dc.identifier.isbn978-3-031-78172-8-
dc.identifier.olddbid23978
dc.identifier.oldhandle10024/19695
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3297
dc.identifier.urnURN:NBN:fi-fe2025060460195-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.conferenceInternational Conference on Pattern Recognition-
dc.relation.doi10.1007/978-3-031-78172-8_20-
dc.relation.funderEuropean Regional Development Fund-
dc.relation.isbn978-3-031-78171-1-
dc.relation.ispartofPattern Recognition : 27th International Conference, ICPR 2024, Kolkata, India, December 1–5, 2024, Proceedings, Part VI-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.relation.issn1611-3349-
dc.relation.issn0302-9743-
dc.relation.numberinseries15306-
dc.relation.urlhttps://doi.org/10.1007/978-3-031-78172-8_20-
dc.source.identifier2-s2.0-85211937224-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19695
dc.subjectDiffusion model-
dc.subjectImage generation-
dc.subjectZero-shot editing-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleImproved Zero-Shot Image Editing via Null-Toon and Directed Delta Denoising Score-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Fahim_Boutellier_2024.pdf
Size:
22.15 MB
Format:
Adobe Portable Document Format

Kokoelmat