Internet of Things (IoT) Assisted Context Aware Fertilizer Recommendation

annif.suggestionssoil|fertilisers|agriculture|soil fertility|fertilisation of plants|fertility|machine learning|Internet of things|ubiquitous computing|nutrients (plants)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p1675|http://www.yso.fi/onto/yso/p2120|http://www.yso.fi/onto/yso/p4503|http://www.yso.fi/onto/yso/p10014|http://www.yso.fi/onto/yso/p10938|http://www.yso.fi/onto/yso/p19514|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p27206|http://www.yso.fi/onto/yso/p5461|http://www.yso.fi/onto/yso/p3938en
dc.contributor.authorKhan, Arfat Ahmad
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorBashir, Rab Nawaz
dc.contributor.authorWechtaisong, Chitapong
dc.contributor.authorAbbas, Muhammad Zahid
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-01-11T06:03:50Z
dc.date.accessioned2025-06-25T13:35:10Z
dc.date.available2023-01-11T06:03:50Z
dc.date.issued2022-12-09
dc.description.abstractAn accurate amount of fertilizer according to the real-time context is the basis of precision agriculture in terms of sustainability and profitability. Many fertilizers recommendation systems are proposed without considering the real-time context in terms of soil fertility level, crop type, and soil type. The major obstacle in developing the real-time context-aware fertilizer recommendation system is related to the complexity associated with the real-time mapping of soil fertility. Furthermore, the existing methods of determining the real-time soil fertility levels for the recommendation of fertilizer are costly, time-consuming, and laborious. Therefore, to tackle this issue, we propose a machine learning-based fertilizer recommendation methodology according to the real-time soil fertility context captured through the Internet of Things (IoT) assisted soil fertility mapping to improve the accuracy of the fertilizer recommendation system. For real-time soil fertility mapping, an IoT architecture is also proposed to support context-aware fertilizer recommendations. The proposed solution is practically implemented in real crop fields to assess the accuracies of IoT-assisted fertility mapping. The accuracy of IoT-assisted fertility mapping is assessed by comparing the proposed solution with the standard soil chemical analysis method in terms of observing Nitrogen (N), Phosphorous (P), and Potassium (K). The results reveal that the observations by both methods are in line with a mean difference of 0.34, 0.36, and −0.13 for N, P, and K observations, respectively. The context-aware fertilizer recommendation is implemented with the Logistic Regression (LR), Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB), and K-Nearest Neighbor (KNN) machine learning models to assess the performance of these machine learning models. The evaluation of the proposed solution reveals that the GNB model is more accurate as compared to the machine learning models evaluated, with accuracies of 96% and 94% from training and testing datasets, respectively.-
dc.description.notification©2022 Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.extent15-
dc.format.pagerange129505-129519-
dc.identifier.olddbid17555
dc.identifier.oldhandle10024/15007
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2367
dc.identifier.urnURN:NBN:fi-fe202301112258-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2022.3228160-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2022.3228160-
dc.relation.volume10-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15007
dc.subjectfertilizer recommendation-
dc.subjectGaussian Naïve Bayes (GNB)-
dc.subjectInternet of Things (IoT)-
dc.subjectk-nearest neighbor (KNN)-
dc.subjectlogistic regression (LR)-
dc.subjectsoil fertility mapping-
dc.subjectsupport vector machine (SVM)-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysomachine learning-
dc.subject.ysoInternet of things-
dc.titleInternet of Things (IoT) Assisted Context Aware Fertilizer Recommendation-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Khan_Faheem_Bashir_Wechtaisong_Abbas_2022.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat