Scalable Hybrid Switching-Driven Software Defined Networking Issue : From the Perspective of Reinforcement Learning Standpoint

annif.suggestionsdata communications networks|information networks|machine learning|data transfer|protocols (data communications)|algorithms|electrical engineering|artificial intelligence|wireless networks|electrical engineers|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p1957|http://www.yso.fi/onto/yso/p12936|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p5429|http://www.yso.fi/onto/yso/p9894|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p24221|http://www.yso.fi/onto/yso/p4468en
dc.contributor.authorBlose, Max
dc.contributor.authorAkinyemi, Lateef Adesola
dc.contributor.authorOjo, Stephen
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorImoize, Agbotiname Lucky
dc.contributor.authorKhan, Arfat Ahmad
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-06-25T10:06:17Z
dc.date.accessioned2025-06-25T12:33:19Z
dc.date.available2025-06-25T10:06:17Z
dc.date.issued2024-04-10
dc.description.abstractThe Software-Defined Networking technology promises to enhance network performance and cost reduction for service providers by providing scalability, flexibility, and programmability through the separation of the control plane from the data plane. However, the separation between the control plane and data plane in the implementation of SDN presents scalability issues, as the controller has limited computational resources. To address the SDN scalability issues identified, we create a scalable hybrid switching solution using machine learning algorithms. We propose an SDN OpenFlow model switch which collaborates with the traditional switch to represent a scalable framework of Hybrid Routing with Reinforcement Learning (sHRRL). We implement a reinforcement algorithm to randomly explore new routes and discover the most optimal path through the Q-learning algorithm. This primitive and model-free form of reinforcement learning utilizes the Markov Decision Process and Bellman’s equation to reiteratively update Q-values in the Q-table for every transition in the network environment state until Q-function has converged to the best Q-values. The proposed hybrid switching model is benchmarked against the standard SDN OpenFlow switch in terms of network performance metrics, including throughput, packet exchange transmission rates, CPU load, and delay. When statistically comparing simulation results, it is evident that the proposed switching model, incorporating machine learning algorithms, can effectively tackle scalability challenges in the design of SDN controller networks, especially in Data Centre environments where rapid switching speeds are crucial.-
dc.description.notification©2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent17-
dc.format.pagerange63334-63350-
dc.identifier.olddbid24187
dc.identifier.oldhandle10024/19935
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/441
dc.identifier.urnURN:NBN:fi-fe2025062573801-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2024.3387273-
dc.relation.funderUniversity of Cape Town, South Africa-
dc.relation.funderUniversity of South Africa, South Africa-
dc.relation.funderAnderson University, USA-
dc.relation.funderUniversity of Vaasa, Finland-
dc.relation.funderUniversity of Lagos, Nigeria-
dc.relation.funderKhon Kaen University, Thailand-
dc.relation.funderLagos State University, Nigeria-
dc.relation.ispartofjournalIEEE access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2024.3387273-
dc.relation.volume12-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:001216573500001-
dc.source.identifier2-s2.0-85190168727-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19935
dc.subjectController; data centre; hybrid switching; OpenFlow; scalability; SDN; sHRRL; Control systems; Routing; Protocols; Routing protocols; Software defined networking; Switching systems-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysomachine learning-
dc.subject.ysoprotocols (data communications)-
dc.titleScalable Hybrid Switching-Driven Software Defined Networking Issue : From the Perspective of Reinforcement Learning Standpoint-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Blose_Akinyemi_Ojo_Faheem_Imoize_Khan_2024.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format

Kokoelmat