Secure medical image transmission using deep neural network in e-health applications
| annif.suggestions | encryption|neural networks (information technology)|information technology|data security|machine learning|algorithms|data protection|data systems|Lewy body dementia|artificial intelligence|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p5475|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p5462|http://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p3636|http://www.yso.fi/onto/yso/p3927|http://www.yso.fi/onto/yso/p22102|http://www.yso.fi/onto/yso/p2616 | en |
| dc.contributor.author | Alarood, Ala Abdulsalam | |
| dc.contributor.author | Faheem, Muhammad | |
| dc.contributor.author | Al-Khasawneh, Mahmoud Ahmad | |
| dc.contributor.author | Alzahrani, Abdullah I. A. | |
| dc.contributor.author | Alshdadi, Abdulrahman A. | |
| dc.contributor.department | Digital Economy | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0003-4628-4486 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2023-10-09T04:58:17Z | |
| dc.date.accessioned | 2025-06-25T12:45:08Z | |
| dc.date.available | 2023-10-09T04:58:17Z | |
| dc.date.issued | 2023-07-19 | |
| dc.description.abstract | Recently, medical technologies have developed, and the diagnosis of diseases through medical images has become very important. Medical images often pass through the branches of the network from one end to the other. Hence, high-level security is required. Problems arise due to unauthorized use of data in the image. One of the methods used to secure data in the image is encryption, which is one of the most effective techniques in this field. Confusion and diffusion are the two main steps addressed here. The contribution here is the adaptation of the deep neural network by the weight that has the highest impact on the output, whether it is an intermediate output or a semi-final output in additional to a chaotic system that is not detectable using deep neural network algorithm. The colour and grayscale images were used in the proposed method by dividing the images according to the Region of Interest by the deep neural network algorithm. The algorithm was then used to generate random numbers to randomly create a chaotic system based on the replacement of columns and rows, and randomly distribute the pixels on the designated area. The proposed algorithm evaluated in several ways, and compared with the existing methods to prove the worth of the proposed method. | - |
| dc.description.notification | © 2023 The Authors. Healthcare Technology Letters published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 12 | - |
| dc.format.pagerange | 87-98 | - |
| dc.identifier.olddbid | 19131 | |
| dc.identifier.oldhandle | 10024/16327 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/843 | |
| dc.identifier.urn | URN:NBN:fi-fe20231009139277 | - |
| dc.language.iso | eng | - |
| dc.publisher | The Institution of Engineering and Technology | - |
| dc.relation.doi | 10.1049/htl2.12049 | - |
| dc.relation.funder | University of Vaasa | - |
| dc.relation.funder | Academy of Finland | - |
| dc.relation.ispartofjournal | Healthcare Technology Letters | - |
| dc.relation.issn | 2053-3713 | - |
| dc.relation.issue | 4 | - |
| dc.relation.url | https://doi.org/10.1049/htl2.12049 | - |
| dc.relation.volume | 10 | - |
| dc.rights | CC BY 4.0 | - |
| dc.source.identifier | WOS:001029307000001 | - |
| dc.source.identifier | Scopus:85165467168 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/16327 | |
| dc.subject | chaotic | - |
| dc.subject | confusion | - |
| dc.subject | deep neural network | - |
| dc.subject | diffusion | - |
| dc.subject | randomness | - |
| dc.subject | region of interest | - |
| dc.subject.discipline | fi=Tietotekniikka|en=Computer Science| | - |
| dc.subject.yso | encryption | - |
| dc.title | Secure medical image transmission using deep neural network in e-health applications | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Alarood_Faheem_Al-Khasawneh_Alzahrani_Alshdadi_2023.pdf
- Size:
- 2.99 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
