Man versus machine : on artificial intelligence and hedge funds performance

annif.suggestionsmutual funds|finance|investments (economics)|investment funds|financial markets|investments|machine learning|artificial intelligence|risk management|investors|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p9620|http://www.yso.fi/onto/yso/p1406|http://www.yso.fi/onto/yso/p4319|http://www.yso.fi/onto/yso/p5932|http://www.yso.fi/onto/yso/p7536|http://www.yso.fi/onto/yso/p4320|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p3134|http://www.yso.fi/onto/yso/p18430en
dc.contributor.authorGrobys, Klaus
dc.contributor.authorKolari, James W.
dc.contributor.authorNiang, Joachim
dc.contributor.departmentInnolab-
dc.contributor.facultyfi=Laskentatoimen ja rahoituksen yksikkö|en=School of Accounting and Finance|-
dc.contributor.orcidhttps://orcid.org/0000-0002-4121-3606-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-01-03T13:54:52Z
dc.date.accessioned2025-06-25T13:42:37Z
dc.date.available2023-10-22T22:00:19Z
dc.date.issued2022-04-22
dc.description.abstractEmploying partially hand-collected data, sample hedge funds are formed into four categories depending on their level of automation. We find that hedge funds with the highest level of automation outperform other hedge funds with more reliance on human involvement. Also, we find that a man versus machine zero-cost strategy that is long hedge funds portfolio with highest level of automation and short those with highest level of human involvement yields a highly significant spread of at least 50 basis points per month. We conclude that automation plays an important role in the profitability of the hedge fund industry.-
dc.description.notification© 2022 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Applied Economics on 22 Apr 2022, available online: http://www.tandfonline.com/10.1080/00036846.2022.2032585-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-10-22
dc.embargo.terms2023-10-22
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent15-
dc.format.pagerange4632-4646-
dc.identifier.olddbid17506
dc.identifier.oldhandle10024/14962
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2598
dc.identifier.urnURN:NBN:fi-fe202301031337-
dc.language.isoeng-
dc.publisherTaylor & Francis-
dc.relation.doi10.1080/00036846.2022.2032585-
dc.relation.ispartofjournalApplied Economics-
dc.relation.issn1466-4283-
dc.relation.issn0003-6846-
dc.relation.issue40-
dc.relation.urlhttps://doi.org/10.1080/00036846.2022.2032585-
dc.relation.volume54-
dc.source.identifierWOS:000785876700001-
dc.source.identifierScopus:85129666238-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/14962
dc.subjectasset pricing-
dc.subjectautomation-
dc.subjecthedge funds-
dc.subject.disciplinefi=Laskentatoimi ja rahoitus|en=Accounting and Finance|-
dc.subject.ysomachine learning-
dc.subject.ysoartificial intelligence-
dc.titleMan versus machine : on artificial intelligence and hedge funds performance-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Grobys_Kolari_Niang_2022.pdf
Size:
998.12 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat