A Novel Deep Belief Network Architecture with Interval Type-2 Fuzzy Set Based Uncertain Parameters Towards Enhanced Learning

annif.suggestionsmachine learning|deep learning|neural networks (information technology)|artificial intelligence|fuzzy logic|errors|paper machines|mathematics|measurement|hidden images|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p7986|http://www.yso.fi/onto/yso/p148|http://www.yso.fi/onto/yso/p10598|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p20802en
dc.contributor.authorShukla, Amit K.
dc.contributor.authorMuhuri, Pranab K.
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-7581-782X-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-01-04T06:06:01Z
dc.date.accessioned2025-06-25T13:04:05Z
dc.date.available2024-01-04T06:06:01Z
dc.date.issued2023-10-10
dc.description.abstractThis paper proposes a novel Deep Belief Network (DBN) architecture, the ‘Interval Type-2 Fuzzy DBN (IT2FDBN)’, which models the weights and biases with IT2 FSs. Thus, it introduces a novel algorithm for augmented deep leaning, which has the capability to address all the limitations of the classical DBN (CDBN) and T1 fuzzy DBN (T1FDBN). We comparatively evaluate the performance of the IT2FDBN by conducting experiments using the popular MNIST handwritten digit recognition datasets. Additionally, to demonstrate its robustness and generalization capabilities, we also conduct experiments taking two noisy variants of MNIST dataset, viz. the MNIST with AWGN (additive white Gaussian noise) and the MNIST with motion blur. We conduct extensive simulations by considering different combinations of nodes in the hidden layers of the DBN for better model selection. We thoroughly compare the results using well-known performance measures such as root mean square error (RMSE) and Error rate. We show that, in terms of RMSE values and error rates, the proposed IT2FDBN outperforms both T1FDBN and CDBN across all the three datasets. Further, we also provide the results of convergence, runtime-based comparison, and statistical analysis in support of our proposal.-
dc.description.notification© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent19-
dc.identifier.olddbid19695
dc.identifier.oldhandle10024/16696
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1437
dc.identifier.urnURN:NBN:fi-fe202401041318-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.fss.2023.108744-
dc.relation.ispartofjournalElsevier Fuzzy Sets and Systems-
dc.relation.issn1872-6801-
dc.relation.issn0165-0114-
dc.relation.urlhttps://doi.org/10.1016/j.fss.2023.108744-
dc.relation.volume477-
dc.rightsCC BY 4.0-
dc.source.identifierScopus:85179880195-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16696
dc.subjectDeep neural networks-
dc.subjectdeep belief networks-
dc.subjectrestricted Boltzmann machine-
dc.subjectinterval type-2 fuzzy sets-
dc.subjectcontrastive divergence-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleA Novel Deep Belief Network Architecture with Interval Type-2 Fuzzy Set Based Uncertain Parameters Towards Enhanced Learning-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Shukla_Muhuri_2023.pdf
Size:
4.42 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat