A Data-Driven Probabilistic Power Flow Analysis Considering Voltage-Dependent Loads

annif.suggestionselectrical engineering|wind energy|distribution of electricity|simulation|renewable energy sources|electric power|probability calculation|production of electricity|electrical power networks|distributed systems|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p4787|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p1213|http://www.yso.fi/onto/yso/p4746|http://www.yso.fi/onto/yso/p5561|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p21082en
dc.contributor.authorZandrazavi, Seyed Farhad
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorPashaei, Meysam
dc.contributor.authorArias, Nataly Bañol
dc.contributor.authorSoeiro, Thiago Batista
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.orcidhttps://orcid.org/0000-0001-7113-8291-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-12-31T05:57:42Z
dc.date.accessioned2025-06-25T13:50:33Z
dc.date.available2024-12-31T05:57:42Z
dc.date.issued2024-06-13
dc.description.abstractProbabilistic power flow analysis (PPFA) stands as a promising method for assessing the steady-state performance of distribution networks (DNs) amidst uncertainties associated with renewable energy sources, particularly wind power units (WPUs). However, the reliability of the PPFA results hinges significantly on the accuracy of the power flow model. This paper proposes a new approach to PPFA that integrates voltage-dependent load (VDL). Although incorporating VDL in PPFA formulation enhances the precision of the model, it introduces additional computational complexity due to the introduction of new nonlinear terms into the optimization problem. Therefore, initially, a dataset of wind speed measurements is fitted to a Weibull probability distribution function (PDF). Subsequently, a new nonlinear model is developed, which integrates Monte Carlo (MC) simulation along with the specified PDF for PPFA, accounting for VDL effects. Finally, the proposed model is efficiently convexified using Newton's generalized binomial theorem, piecewise linearization, and appropriate approximations to extract the corresponding linear programming (LP) model. This LP model is then tested on a modified WPU-integrated 33-bus DN, revealing that the inclusion of VDL significantly influences the PPFA results. A comparative analysis between PPFA models with and without VDL incorporation illustrates that overlooking VDL can lead to underestimation of power losses and voltage drops in the analysis.-
dc.description.notification©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent5-
dc.identifier.isbn979-8-3503-5518-5-
dc.identifier.olddbid22246
dc.identifier.oldhandle10024/18551
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2839
dc.identifier.urnURN:NBN:fi-fe20241231106835-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/eeeic/icpseurope61470.2024.10751499-
dc.relation.funderFinnish Cultural Foundation-
dc.relation.grantnumber00241288-
dc.relation.isbn979-8-3503-5519-2-
dc.relation.ispartof2024 IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)-
dc.relation.issn2994-9467-
dc.relation.issn2994-9440-
dc.relation.urlhttps://doi.org/10.1109/EEEIC/ICPSEurope61470.2024.10751499-
dc.source.identifierScopus:85211956154-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18551
dc.subjectData-driven analysis-
dc.subjectdistribution network-
dc.subjectprobabilistic analysis-
dc.subjectpower flow-
dc.subjectMonte Carlo Simulation-
dc.subjectvoltage-dependent loads-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleA Data-Driven Probabilistic Power Flow Analysis Considering Voltage-Dependent Loads-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Zandrazavi_Shafie-khah_Pashaei_Arias_Soeiro_2024.pdf
Size:
645.52 KB
Format:
Adobe Portable Document Format

Kokoelmat