Feature Selection by Multiobjective Optimization: Application to Spam Detection System by Neural Networks and Grasshopper Optimization Algorithm
| annif.suggestions | spam mail|algorithms|email|machine learning|information technology|Pakistan|neural networks (information technology)|data security|artificial intelligence|Goa|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p16665|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p16666|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p5462|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p176958 | en |
| dc.contributor.author | Ghaleb, Sanaa A. A. | |
| dc.contributor.author | Mohamad, Mumtazimah | |
| dc.contributor.author | Ghanem, Waheed Ali H. M. | |
| dc.contributor.author | Nasser, Abdullah B. | |
| dc.contributor.author | Ghetas, Mohamed | |
| dc.contributor.author | Abdullahi, Akibu Mahmoud | |
| dc.contributor.author | Saleh, Sami Abdulla Mohsen | |
| dc.contributor.author | Arshad, Humaira | |
| dc.contributor.author | Omolara, Abiodun Esther | |
| dc.contributor.author | Abiodun, Oludare Isaac | |
| dc.contributor.department | fi=Ei tutkimusalustaa|en=No platform| | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0002-5377-999X | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2022-12-28T08:32:05Z | |
| dc.date.accessioned | 2025-06-25T13:40:10Z | |
| dc.date.available | 2022-12-28T08:32:05Z | |
| dc.date.issued | 2022-09-05 | |
| dc.description.abstract | Networks are strained by spam, which also overloads email servers and blocks mailboxes with unwanted messages and files. Setting the protective level for spam filtering might become even more crucial for email users when malicious steps are taken since they must deal with an increase in the number of valid communications being marked as spam. By finding patterns in email communications, spam detection systems (SDS) have been developed to keep track of spammers and filter email activity. SDS has also enhanced the tool for detecting spam by reducing the rate of false positives and increasing the accuracy of detection. The difficulty with spam classifiers is the abundance of features. The importance of feature selection (FS) comes from its role in directing the feature selection algorithm’s search for ways to improve the SDS’s classification performance and accuracy. As a means of enhancing the performance of the SDS, we use a wrapper technique in this study that is based on the multi-objective grasshopper optimization algorithm (MOGOA) for feature extraction and the recently revised EGOA algorithm for multilayer perceptron (MLP) training. The suggested system’s performance was verified using the SpamBase, SpamAssassin, and UK-2011 datasets. Our research showed that our novel approach outperformed a variety of established practices in the literature by as much as 97.5%, 98.3%, and 96.4% respectively. | - |
| dc.description.notification | ©2022 the Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 15 | - |
| dc.format.pagerange | 98475-98489 | - |
| dc.identifier.olddbid | 17461 | |
| dc.identifier.oldhandle | 10024/14915 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/2506 | |
| dc.identifier.urn | URN:NBN:fi-fe2022122873931 | - |
| dc.language.iso | eng | - |
| dc.publisher | IEEE | - |
| dc.relation.doi | 10.1109/ACCESS.2022.3204593 | - |
| dc.relation.ispartofjournal | IEEE Access | - |
| dc.relation.issn | 2169-3536 | |
| dc.relation.url | https://doi.org/10.1109/ACCESS.2022.3204593 | - |
| dc.relation.volume | 10 | - |
| dc.rights | CC BY-NC-ND 4.0 | - |
| dc.source.identifier | WOS:000857332200001 | - |
| dc.source.identifier | Scopus:85137903867 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/14915 | |
| dc.subject | feature selection (FS) | - |
| dc.subject | grasshopper optimization algorithm (GOA) | - |
| dc.subject | multilayer perceptron (MLP) | - |
| dc.subject | multi-objective optimization (MOO) | - |
| dc.subject | Spam detection system (SDS) | - |
| dc.subject.discipline | fi=Tietotekniikka|en=Computer Science| | - |
| dc.title | Feature Selection by Multiobjective Optimization: Application to Spam Detection System by Neural Networks and Grasshopper Optimization Algorithm | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Ghaleb_Mohamad_Ghanem_Nasser_Ghetas_Abdullahi_Saleh_Arshad_Omolara_Abiodun_2022.pdf
- Size:
- 2.23 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
