An Advanced Operation Mode with Product‑Service System Using Lifecycle Big Data and Deep Learning

annif.suggestionssustainable development|enterprises|industry|precision engineering|big data|data mining|product development|machine learning|data systems|sharing economy|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p8470|http://www.yso.fi/onto/yso/p3128|http://www.yso.fi/onto/yso/p998|http://www.yso.fi/onto/yso/p17208|http://www.yso.fi/onto/yso/p27202|http://www.yso.fi/onto/yso/p5520|http://www.yso.fi/onto/yso/p2721|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p3927|http://www.yso.fi/onto/yso/p27424en
dc.contributor.authorRen, Shan
dc.contributor.authorZhang, Yingfeng
dc.contributor.authorSakao, Tomohiko
dc.contributor.authorLiu, Yang
dc.contributor.authorCai, Ruilong
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-02-17T06:36:57Z
dc.date.accessioned2025-06-25T13:21:59Z
dc.date.available2022-02-17T06:36:57Z
dc.date.issued2022
dc.description.abstractAs a successful business strategy for enhancing environmental sustainability and decreasing the natural resource consumption of societies, the product-service system (PSS) has raised significant interests in the academic and industrial community. However, with the digitisation of the industry and the advancement of multisensory technologies, the PSS providers face many challenges. One major challenge is how the PSS providers can fully capture and efficiently analyse the operation and maintenance big data of different products and different customers in different conditions to obtain insights to improve their production processes, products and services. To address this challenge, a new operation mode and procedural approach are proposed for operation and maintenance of bigger cluster products, when these products are provided as a part of PSS and under exclusive control by the providers. The proposed mode and approach are driven by lifecycle big data of large cluster products and employs deep learning to train the neural networks to identify the fault features, thereby monitoring the products’ health status. This new mode is applied to a real case of a leading CNC machine provider to illustrate its feasibility. Higher accuracy and shortened time for fault prediction are realised, resulting in the provider’s saving of the maintenance and operation cost.-
dc.description.notification© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent17-
dc.format.pagerange287-303-
dc.identifier.olddbid15484
dc.identifier.oldhandle10024/13570
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1991
dc.identifier.urnURN:NBN:fi-fe2022021719604-
dc.language.isoeng-
dc.publisherSpringer-
dc.publisherKorean Society for Precision Engineering-
dc.relation.doi10.1007/s40684-021-00354-3-
dc.relation.funderNational Natural Science Foundation of China (NSFC)-
dc.relation.funderShaanxi Provincial Education Department-
dc.relation.funderNational Social Science Foundation of China-
dc.relation.grantnumber52005408-
dc.relation.grantnumber61801175-
dc.relation.grantnumber20JK0922-
dc.relation.grantnumber18XGL001-
dc.relation.ispartofjournalInternational Journal of Precision Engineering and Manufacturing-Green Technology-
dc.relation.issn2198-0810-
dc.relation.issn2288-6206-
dc.relation.issue1-
dc.relation.urlhttps://doi.org/10.1007/s40684-021-00354-3-
dc.relation.volume9-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:000650094600002-
dc.source.identifierScopus:85105847721-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13570
dc.subjectProduct-service system-
dc.subjectSharing-
dc.subjectProduction machine-
dc.subjectLifecycle-
dc.subjectFault diagnosis-
dc.subject.disciplinefi=Tuotantotalous|en=Industrial Management|-
dc.subject.ysobig data-
dc.titleAn Advanced Operation Mode with Product‑Service System Using Lifecycle Big Data and Deep Learning-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ren_Zhang_Sakao_Liu_Cai_2022.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat