A Novel Evolutionary-Based Deep Convolutional Neural Network Model for Intelligent Load Forecasting

annif.suggestionsneural networks (information technology)|machine learning|forecasts|electricity consumption|algorithms|data mining|optimisation|electrical power networks|electricity market|electricity|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p15953|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p5520|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p16837|http://www.yso.fi/onto/yso/p5828en
dc.contributor.authorJalali, Seyed Mohammad Jafar
dc.contributor.authorAhmadian, Sajad
dc.contributor.authorKhosravi, Abbas
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorNahavandi, Saeid
dc.contributor.authorCatalão, João P. S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-11-29T13:22:35Z
dc.date.accessioned2025-06-25T13:24:05Z
dc.date.available2023-03-12T23:00:06Z
dc.date.issued2021-03-12
dc.description.abstractThe problem of electricity load forecasting has emerged as an essential topic for power systems and electricity markets seeking to minimize costs. However, this topic has a high level of complexity. Over the past few years, convolutional neural networks (CNNs) have been used to solve several complex deep learning challenges, making substantial progress in some fields and contributing to state of the art performances. Nevertheless, CNN architecture design remains a challenging problem. Moreover, designing an optimal architecture for CNNs leads to improve their performance in the prediction process. This article proposes an effective approach for the electricity load forecasting problem using a deep neuroevolution algorithm to automatically design the CNN structures using a novel modified evolutionary algorithm called enhanced grey wolf optimizer (EGWO). The architecture of CNNs and its hyperparameters are optimized by the novel discrete EGWO algorithm for enhancing its load forecasting accuracy. The proposed method is evaluated on real time data obtained from datasets of Australian Energy Market Operator in the year 2018. The simulation results demonstrated that the proposed method outperforms other compared forecasting algorithms based on different evaluation metrics.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.notificationThis work was supported by FEDER funds through COMPETE 2020 and by Portuguese funds through FCT, under Grant POCI-01-0145-FEDER-029803 (02/SAICT/2017). Paper no. TII-20-5506.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-03-12
dc.embargo.terms2023-03-12
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent11-
dc.format.pagerange8243-8253-
dc.identifier.olddbid15102
dc.identifier.oldhandle10024/13258
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2045
dc.identifier.urnURN:NBN:fi-fe2021112957831-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/TII.2021.3065718-
dc.relation.funderFEDER funds through COMPETE 2020, Portuguese Foundation for Science and Technology European Commission-
dc.relation.grantnumberPOCI-01-0145-FEDER-029803 (02/SAICT/2017)-
dc.relation.ispartofjournalIEEE Transactions on Industrial Informatics-
dc.relation.issn1941-0050-
dc.relation.issn1551-3203-
dc.relation.issue12-
dc.relation.urlhttps://doi.org/10.1109/TII.2021.3065718-
dc.relation.volume17-
dc.source.identifierWOS:000690940600036-
dc.source.identifierScopus: 85102714646-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13258
dc.subjectDeep convolutional neural networks (CNNs)-
dc.subjectelectricity load forecasting-
dc.subjectevolutionary computation-
dc.subjectneuroevolution-
dc.subjectoptimization-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleA Novel Evolutionary-Based Deep Convolutional Neural Network Model for Intelligent Load Forecasting-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Jalali_Ahmadian_Khosravi_Shafie-khah_Nahavandi_Catalão_2021.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat