Depression detection with machine learning of structural and non-structural dual languages
| annif.suggestions | social media|Pakistan|India|depression (mental disorders)|machine learning|Urdu language|Twitter|forecasts|suicide|Facebook|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p20774|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p105027|http://www.yso.fi/onto/yso/p7995|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p17877|http://www.yso.fi/onto/yso/p24097|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p15369|http://www.yso.fi/onto/yso/p21063 | en |
| dc.contributor.author | Rehmani, Filza | |
| dc.contributor.author | Shaheen, Qaisar | |
| dc.contributor.author | Anwar, Muhammad | |
| dc.contributor.author | Faheem, Muhammad | |
| dc.contributor.author | Bhatti, Shahzad Sarwar | |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0003-4628-4486 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2025-06-25T10:25:35Z | |
| dc.date.accessioned | 2025-06-25T12:36:48Z | |
| dc.date.available | 2025-06-25T10:25:35Z | |
| dc.date.issued | 2024-06-10 | |
| dc.description.abstract | Depression is a serious mental state that negatively impacts thoughts, feelings, and actions. Social media use is rapidly growing, with people expressing themselves in their regional languages. In Pakistan and India, many people use Roman Urdu on social media. This makes Roman Urdu important for predicting depression in these regions. However, previous studies show no significant contribution in predicting depression through Roman Urdu or in combination with structured languages like English. The study aims to create a Roman Urdu dataset to predict depression risk in dual languages [Roman Urdu (non-structural language) + English (structural language)]. Two datasets were used: Roman Urdu data manually converted from English on Facebook, and English comments from Kaggle. These datasets were merged for the research experiments. Machine learning models, including Support Vector Machine (SVM), Support Vector Machine Radial Basis Function (SVM-RBF), Random Forest (RF), and Bidirectional Encoder Representations from Transformers (BERT), were tested. Depression risk was classified into not depressed, moderate, and severe. Experimental studies show that the SVM achieved the best result with an accuracy of 0.84% compared to existing models. The presented study refines the area of depression to predict the depression in Asian countries. | - |
| dc.description.notification | © 2024 The Author(s). Healthcare Technology Letters published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0/ | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 9 | - |
| dc.format.pagerange | 218-226 | - |
| dc.identifier.olddbid | 24188 | |
| dc.identifier.oldhandle | 10024/19936 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/564 | |
| dc.identifier.urn | URN:NBN:fi-fe2025062573812 | - |
| dc.language.iso | eng | - |
| dc.publisher | John Wiley & Sons | - |
| dc.relation.doi | 10.1049/htl2.12088 | - |
| dc.relation.funder | The Islamia University of Bahawalpur, Bannu, Pakistan | - |
| dc.relation.funder | University of Education, Lahore, Pakistan | - |
| dc.relation.funder | University of Vaasa, Finland | - |
| dc.relation.funder | Emerson University, Multan, Pakistan | - |
| dc.relation.ispartofjournal | Healthcare technology letters | - |
| dc.relation.issn | 2053-3713 | - |
| dc.relation.issue | 4 | - |
| dc.relation.url | https://doi.org/10.1049/htl2.12088 | - |
| dc.relation.volume | 11 | - |
| dc.rights | CC BY 4.0 | - |
| dc.source.identifier | WOS:001241830000001 | - |
| dc.source.identifier | 2-s2.0-85194467789 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/19936 | |
| dc.subject | artificial intelligence; healthcare; depression detection; languages | - |
| dc.subject.discipline | fi=Tietotekniikka|en=Computer Science| | - |
| dc.subject.yso | machine learning | - |
| dc.title | Depression detection with machine learning of structural and non-structural dual languages | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Rehmani_Shaheen_Anwar_Faheem_Bhatti_2024.pdf
- Size:
- 582.54 KB
- Format:
- Adobe Portable Document Format
