Depression detection with machine learning of structural and non-structural dual languages

annif.suggestionssocial media|Pakistan|India|depression (mental disorders)|machine learning|Urdu language|Twitter|forecasts|suicide|Facebook|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20774|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p105027|http://www.yso.fi/onto/yso/p7995|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p17877|http://www.yso.fi/onto/yso/p24097|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p15369|http://www.yso.fi/onto/yso/p21063en
dc.contributor.authorRehmani, Filza
dc.contributor.authorShaheen, Qaisar
dc.contributor.authorAnwar, Muhammad
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorBhatti, Shahzad Sarwar
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-06-25T10:25:35Z
dc.date.accessioned2025-06-25T12:36:48Z
dc.date.available2025-06-25T10:25:35Z
dc.date.issued2024-06-10
dc.description.abstractDepression is a serious mental state that negatively impacts thoughts, feelings, and actions. Social media use is rapidly growing, with people expressing themselves in their regional languages. In Pakistan and India, many people use Roman Urdu on social media. This makes Roman Urdu important for predicting depression in these regions. However, previous studies show no significant contribution in predicting depression through Roman Urdu or in combination with structured languages like English. The study aims to create a Roman Urdu dataset to predict depression risk in dual languages [Roman Urdu (non-structural language) + English (structural language)]. Two datasets were used: Roman Urdu data manually converted from English on Facebook, and English comments from Kaggle. These datasets were merged for the research experiments. Machine learning models, including Support Vector Machine (SVM), Support Vector Machine Radial Basis Function (SVM-RBF), Random Forest (RF), and Bidirectional Encoder Representations from Transformers (BERT), were tested. Depression risk was classified into not depressed, moderate, and severe. Experimental studies show that the SVM achieved the best result with an accuracy of 0.84% compared to existing models. The presented study refines the area of depression to predict the depression in Asian countries.-
dc.description.notification© 2024 The Author(s). Healthcare Technology Letters published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent9-
dc.format.pagerange218-226-
dc.identifier.olddbid24188
dc.identifier.oldhandle10024/19936
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/564
dc.identifier.urnURN:NBN:fi-fe2025062573812-
dc.language.isoeng-
dc.publisherJohn Wiley & Sons-
dc.relation.doi10.1049/htl2.12088-
dc.relation.funderThe Islamia University of Bahawalpur, Bannu, Pakistan-
dc.relation.funderUniversity of Education, Lahore, Pakistan-
dc.relation.funderUniversity of Vaasa, Finland-
dc.relation.funderEmerson University, Multan, Pakistan-
dc.relation.ispartofjournalHealthcare technology letters-
dc.relation.issn2053-3713-
dc.relation.issue4-
dc.relation.urlhttps://doi.org/10.1049/htl2.12088-
dc.relation.volume11-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001241830000001-
dc.source.identifier2-s2.0-85194467789-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19936
dc.subjectartificial intelligence; healthcare; depression detection; languages-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysomachine learning-
dc.titleDepression detection with machine learning of structural and non-structural dual languages-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Rehmani_Shaheen_Anwar_Faheem_Bhatti_2024.pdf
Size:
582.54 KB
Format:
Adobe Portable Document Format

Kokoelmat