Large Language Models With Contrastive Decoding Algorithm for Hallucination Mitigation in Low-Resource Languages

annif.suggestionsmachine learning|translating|artificial intelligence|computational linguistics|neural networks (information technology)|deep learning|machine translating|multilingualism|natural language|NMT|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p9586|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p6069|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p39319|http://www.yso.fi/onto/yso/p6720|http://www.yso.fi/onto/yso/p26762|http://www.yso.fi/onto/yso/p16354en
dc.contributor.authorHongying, Zan
dc.contributor.authorJaved, Arifa
dc.contributor.authorAbdullah, Muhammad
dc.contributor.authorRashid, Javed
dc.contributor.authorFaheem, Muhammad
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-05-05T08:04:02Z
dc.date.accessioned2025-06-25T13:59:30Z
dc.date.available2025-05-05T08:04:02Z
dc.date.issued2025-04-03
dc.description.abstractNeural machine translation (NMT) has advanced with deep learning and large-scale multilingual models, yet translating low-resource languages often lacks sufficient training data and leads to hallucinations. This often results in translated content that diverges significantly from the source text. This research proposes a refined Contrastive Decoding (CD) algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in low-resource NMT and improve translation quality. Advanced large language NMT models, including ChatGLM and LLaMA, are fine-tuned and implemented for their superior contextual understanding and cross-lingual capabilities. The refined CD algorithm evaluates multiple candidate translations using BLEU score, semantic similarity, and Named Entity Recognition accuracy. Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates. Fine-tuned models achieve higher evaluation metrics compared to baseline models and state-of-the-art models. An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations. Notably, the refined methodology increased the BLEU score by approximately 30% compared to baseline models.-
dc.description.notification© 2025 The Author(s). CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent14-
dc.identifier.olddbid23242
dc.identifier.oldhandle10024/19119
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3131
dc.identifier.urnURN:NBN:fi-fe2025050536331-
dc.language.isoeng-
dc.publisherInstitution of engineering and technology-
dc.relation.doi10.1049/cit2.70004-
dc.relation.funderVTT Technical Research Center of Finland-
dc.relation.ispartofjournalCAAI Transactions on Intelligence Technology-
dc.relation.issn2468-2322-
dc.relation.issn2468-6557-
dc.relation.urlhttps://doi.org/10.1049/cit2.70004-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001458943800001-
dc.source.identifier2-s2.0-105001703642-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19119
dc.subjectartificial neural network-
dc.subjectcomputer vision-
dc.subjectdeep learning-
dc.subjectdeep neural networks-
dc.subjectlarge language model-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysoartificial intelligence-
dc.titleLarge Language Models With Contrastive Decoding Algorithm for Hallucination Mitigation in Low-Resource Languages-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Hongying_Javed_Abdullah_Rashid_Faheem_2025.pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format

Kokoelmat